Abstract
Antibodies in porcine sera against glycoprotein E (gE) of pseudorabies virus (PRV) are usually measured in blocking enzyme-linked immunosorbent assays (ELISAs) with one or two murine monoclonal antibodies (MAbs) directed against gE. Our aim was to develop a confirmation assay which is based on another principle and which is able to detect antibodies directed against most potential binding sites on gE with high specificity. Therefore, we developed an indirect double-antibody sandwich assay (IDAS) using recombinant gE expressed by baculovirus (BacgE960). A fragment of the gE gene consisting of nucleotide positions +60 to +1020 of gE, coding for the major antigenic sites of gE but not the transmembrane region, was cloned behind the signal sequence of PRV gG and the p10 promoter in a baculovirus vector. Immunoblot analysis showed that the expressed protein reacted with MAbs directed against five of the six antigenic sites on gE. Although the conformation of some antigenic sites, notably antigenic sites E and C, was not identical to their natural conformation, the expressed protein bound gE-specific antibodies in porcine sera in Western blots (immunoblots) and ELISAs. For the IDAS, a coating MAb directed against the nonimmunodominant antigenic site A on gE was chosen. A major obstacle in binding ELISAs, such as the IDAS, appeared to be the high nonspecific binding activity observed in porcine sera. As a result, sera could be tested only in relatively high dilutions in the BacgE960 IDAS, in contrast to the testing of sera in blocking ELISAs. The sensitivity and specificity of the newly developed BacgE960 IDAS were evaluated and compared with those of five commercially available blocking ELISAs by using several sets of sera of known PRV disease history. The BacgE960 IDAS assay had a high diagnostic specificity and a moderate sensitivity. The five blocking ELISAs differed remarkably in sensitivity and specificity, thereby illustrating the need for standardization and confirmation. We conclude that the BacgE960 IDAS is a useful and specific additional (confirmatory) test for the detection of antibodies to gE.
Full Text
The Full Text of this article is available as a PDF (252.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altmann F., Kornfeld G., Dalik T., Staudacher E., Glössl J. Processing of asparagine-linked oligosaccharides in insect cells. N-acetylglucosaminyltransferase I and II activities in cultured lepidopteran cells. Glycobiology. 1993 Dec;3(6):619–625. doi: 10.1093/glycob/3.6.619. [DOI] [PubMed] [Google Scholar]
- Annelli J. F., Morrison R. B., Goyal S. M., Bergeland M. E., Mackey W. J., Thawley D. G. Pig herds having a single reactor to serum antibody tests to Aujeszky's disease virus. Vet Rec. 1991 Jan 19;128(3):49–53. doi: 10.1136/vr.128.3.49. [DOI] [PubMed] [Google Scholar]
- Chuma T., Le Blois H., Sánchez-Vizcaíno J. M., Diaz-Laviada M., Roy P. Expression of the major core antigen VP7 of African horsesickness virus by a recombinant baculovirus and its use as a group-specific diagnostic reagent. J Gen Virol. 1992 Apr;73(Pt 4):925–931. doi: 10.1099/0022-1317-73-4-925. [DOI] [PubMed] [Google Scholar]
- Duffy S. J., Morrison R. B., Thawley D. G. Spread of pseudorabies virus among breeding swine in quarantined herds. J Am Vet Med Assoc. 1991 Jul 1;199(1):61–65. [PubMed] [Google Scholar]
- Enquist L. W., Dubin J., Whealy M. E., Card J. P. Complementation analysis of pseudorabies virus gE and gI mutants in retinal ganglion cell neurotropism. J Virol. 1994 Aug;68(8):5275–5279. doi: 10.1128/jvi.68.8.5275-5279.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GRACE T. D. Establishment of four strains of cells from insect tissues grown in vitro. Nature. 1962 Aug 25;195:788–789. doi: 10.1038/195788a0. [DOI] [PubMed] [Google Scholar]
- Houwers D. J., Schaake J., Jr An improved ELISA for the detection of antibodies to ovine and caprine lentiviruses, employing monoclonal antibodies in a one-step assay. J Immunol Methods. 1987 Apr 2;98(1):151–154. doi: 10.1016/0022-1759(87)90449-2. [DOI] [PubMed] [Google Scholar]
- Hulst M. M., Westra D. F., Wensvoort G., Moormann R. J. Glycoprotein E1 of hog cholera virus expressed in insect cells protects swine from hog cholera. J Virol. 1993 Sep;67(9):5435–5442. doi: 10.1128/jvi.67.9.5435-5442.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobs L., Kimman T. G. Epitope-specific antibody response against glycoprotein E of pseudorabies virus. Clin Diagn Lab Immunol. 1994 Sep;1(5):500–505. doi: 10.1128/cdli.1.5.500-505.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobs L., Meloen R. H., Gielkens A. L., Van Oirschot J. T. Epitope analysis of glycoprotein I of pseudorabies virus. J Gen Virol. 1990 Apr;71(Pt 4):881–887. doi: 10.1099/0022-1317-71-4-881. [DOI] [PubMed] [Google Scholar]
- Jarvis D. L., Summers M. D. Glycosylation and secretion of human tissue plasminogen activator in recombinant baculovirus-infected insect cells. Mol Cell Biol. 1989 Jan;9(1):214–223. doi: 10.1128/mcb.9.1.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson D. C., Feenstra V. Identification of a novel herpes simplex virus type 1-induced glycoprotein which complexes with gE and binds immunoglobulin. J Virol. 1987 Jul;61(7):2208–2216. doi: 10.1128/jvi.61.7.2208-2216.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz J. B., Pederson J. C. Analysis of glycoprotein I (gI) negative and aberrant pseudorabies viral diagnostic isolates. Am J Vet Res. 1992 Dec;53(12):2259–2263. [PubMed] [Google Scholar]
- Kimman T. G. Characterization of the pseudorabies virus-specific immunoglobulin M response and evaluation of its diagnostic use in pigs with preexisting immunity to the virus. J Clin Microbiol. 1993 Sep;31(9):2309–2314. doi: 10.1128/jcm.31.9.2309-2314.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lodish H. F. Transport of secretory and membrane glycoproteins from the rough endoplasmic reticulum to the Golgi. A rate-limiting step in protein maturation and secretion. J Biol Chem. 1988 Feb 15;263(5):2107–2110. [PubMed] [Google Scholar]
- McFerran J. B., Dow C. Studies on immunisation of pigs with the Bartha strain of Aujeszky's disease virus. Res Vet Sci. 1975 Jul;19(1):17–22. [PubMed] [Google Scholar]
- Mellencamp M. W., Pfeiffer N. E., Suiter B. T., Harness J. R., Beckenhauer W. H. Identification of pseudorabies virus-exposed swine with a gI glycoprotein enzyme-linked immunosorbent assay. J Clin Microbiol. 1989 Oct;27(10):2208–2213. doi: 10.1128/jcm.27.10.2208-2213.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mettenleiter T. C., Schreurs C., Thiel H. J., Rziha H. J. Variability of pseudorabies virus glycoprotein I expression. Virology. 1987 May;158(1):141–146. doi: 10.1016/0042-6822(87)90247-9. [DOI] [PubMed] [Google Scholar]
- Miller L. K. Baculoviruses as gene expression vectors. Annu Rev Microbiol. 1988;42:177–199. doi: 10.1146/annurev.mi.42.100188.001141. [DOI] [PubMed] [Google Scholar]
- Pfeffer S. R., Rothman J. E. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu Rev Biochem. 1987;56:829–852. doi: 10.1146/annurev.bi.56.070187.004145. [DOI] [PubMed] [Google Scholar]
- Reid-Sanden F. L., Sumner J. W., Smith J. S., Fekadu M., Shaddock J. H., Bellini W. J. Rabies diagnostic reagents prepared from a rabies N gene recombinant expressed in baculovirus. J Clin Microbiol. 1990 May;28(5):858–863. doi: 10.1128/jcm.28.5.858-863.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stegeman J. A., Kimman T. G., Van Oirschot J. T., Tielen M. J., Hunneman W. A. Spread of Aujeszky's disease virus within pig herds in an intensively vaccinated region. Vet Rec. 1994 Mar 26;134(13):327–330. doi: 10.1136/vr.134.13.327. [DOI] [PubMed] [Google Scholar]
- Urakawa T., Roy P. Bluetongue virus tubules made in insect cells by recombinant baculoviruses: expression of the NS1 gene of bluetongue virus serotype 10. J Virol. 1988 Nov;62(11):3919–3927. doi: 10.1128/jvi.62.11.3919-3927.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Zaane D., Hulst M. M. Monoclonal antibodies against porcine immunoglobulin isotypes. Vet Immunol Immunopathol. 1987 Sep;16(1-2):23–36. doi: 10.1016/0165-2427(87)90171-1. [DOI] [PubMed] [Google Scholar]
- Vanderheijden N., De Moerlooze L., Vandenbergh D., Chappuis G., Renard A., Lecomte C. Expression of the bovine viral diarrhoea virus Osloss p80 protein: its use as ELISA antigen for cattle serum antibody detection. J Gen Virol. 1993 Jul;74(Pt 7):1427–1431. doi: 10.1099/0022-1317-74-7-1427. [DOI] [PubMed] [Google Scholar]
- Vaughn J. L., Goodwin R. H., Tompkins G. J., McCawley P. The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro. 1977 Apr;13(4):213–217. doi: 10.1007/BF02615077. [DOI] [PubMed] [Google Scholar]
- Verschoor E. J., van Vliet A. L., Egberink H. F., Hesselink W., Horzinek M. C., de Ronde A. Expression of feline immunodeficiency virus gag and env precursor proteins in Spodoptera frugiperda cells and their use in immunodiagnosis. J Clin Microbiol. 1993 Sep;31(9):2350–2355. doi: 10.1128/jcm.31.9.2350-2355.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vlak J. M., Schouten A., Usmany M., Belsham G. J., Klinge-Roode E. C., Maule A. J., Van Lent J. W., Zuidema D. Expression of cauliflower mosaic virus gene I using a baculovirus vector based upon the p10 gene and a novel selection method. Virology. 1990 Nov;179(1):312–320. doi: 10.1016/0042-6822(90)90299-7. [DOI] [PubMed] [Google Scholar]
- Wan C. H., Riley M. I., Hook R. R., Jr, Franklin C. L., Besch-Williford C. L., Riley L. K. Expression of Sendai virus nucleocapsid protein in a baculovirus expression system and application to diagnostic assays for Sendai virus infection. J Clin Microbiol. 1995 Aug;33(8):2007–2011. doi: 10.1128/jcm.33.8.2007-2011.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whealy M. E., Card J. P., Robbins A. K., Dubin J. R., Rziha H. J., Enquist L. W. Specific pseudorabies virus infection of the rat visual system requires both gI and gp63 glycoproteins. J Virol. 1993 Jul;67(7):3786–3797. doi: 10.1128/jvi.67.7.3786-3797.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yao Z., Jackson W., Forghani B., Grose C. Varicella-zoster virus glycoprotein gpI/gpIV receptor: expression, complex formation, and antigenicity within the vaccinia virus-T7 RNA polymerase transfection system. J Virol. 1993 Jan;67(1):305–314. doi: 10.1128/jvi.67.1.305-314.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zuckermann F. A., Mettenleiter T. C., Schreurs C., Sugg N., Ben-Porat T. Complex between glycoproteins gI and gp63 of pseudorabies virus: its effect on virus replication. J Virol. 1988 Dec;62(12):4622–4626. doi: 10.1128/jvi.62.12.4622-4626.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Oirschot J. T., Daus F., Kimman T. G., van Zaane D. Antibody response to glycoprotein I in maternally immune pigs exposed to a mildly virulent strain of pseudorabies virus. Am J Vet Res. 1991 Nov;52(11):1788–1793. [PubMed] [Google Scholar]
- van Oirschot J. T., Gielkens A. L., Moormann R. J., Berns A. J. Marker vaccines, virus protein-specific antibody assays and the control of Aujeszky's disease. Vet Microbiol. 1990 Jun;23(1-4):85–101. doi: 10.1016/0378-1135(90)90139-m. [DOI] [PubMed] [Google Scholar]