Skip to main content
Clinical and Diagnostic Laboratory Immunology logoLink to Clinical and Diagnostic Laboratory Immunology
. 1996 Mar;3(2):211–215. doi: 10.1128/cdli.3.2.211-215.1996

Immunoglobulin G avidity testing in serum and cerebrospinal fluid for analysis of measles virus infection.

M Narita 1, S Yamada 1, Y Matsuzono 1, O Itakura 1, T Togashi 1, H Kikuta 1
PMCID: PMC170280  PMID: 8991638

Abstract

We studied a variety of patients with measles virus infection by using avidity testing for measles virus-specific immunoglobulin G (IgG) in serum and cerebrospinal fluid samples. For the avidity testing, an Enzygnost measles IgG enzyme-linked immunosorbent assay kit was used with an 8 M urea denaturing method. With this method, low-avidity IgG (acute primary infection, avidity of < 30% within 15 days of the onset of rash) and high-avidity IgG (subacute sclerosing panencephalitis, avidity of > 75%) could be clearly distinguished by using serum samples. One patient, who developed a typical course of measles despite a previous vaccination, showed a positive IgM response with an initial low titer of measles virus-specific IgG of low avidity, but a later sample revealed a high titer of IgG of intermediate (40%) avidity, suggesting previous immunological priming. Two patients with breakthrough infection (secondary vaccine failure), both having central nervous system involvement, showed a positive IgM response with initial high titers of serum IgG of high avidity. In addition, one of the patients had a detectable level of measles-specific IgG in cerebrospinal fluid. In this patient, the avidity of both serum and cerebrospinal fluid IgG decreased during the short follow-up period. This phenomenon has never before been reported. In subacute sclerosing panencephalitis patients, the avidity of cerebrospinal fluid IgG was consistently lower than that of serum IgG. The difference in avidity between cerebrospinal fluid and serum IgG may be used as a direct indicator of intrathecal production of IgG. In conclusion, the avidity testing is simple to perform, reliable, and highly informative in the analysis of measles virus infection.

Full Text

The Full Text of this article is available as a PDF (168.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agbarakwe A. E., Griffiths H., Begg N., Chapel H. M. Avidity of specific IgG antibodies elicited by immunisation against Haemophilus influenzae type b. J Clin Pathol. 1995 Mar;48(3):206–209. doi: 10.1136/jcp.48.3.206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blackburn N. K., Besselaar T. G., Schoub B. D., O'Connell K. F. Differentiation of primary cytomegalovirus infection from reactivation using the urea denaturation test for measuring antibody avidity. J Med Virol. 1991 Jan;33(1):6–9. doi: 10.1002/jmv.1890330103. [DOI] [PubMed] [Google Scholar]
  3. Edmonson M. B., Addiss D. G., McPherson J. T., Berg J. L., Circo S. R., Davis J. P. Mild measles and secondary vaccine failure during a sustained outbreak in a highly vaccinated population. JAMA. 1990 May 9;263(18):2467–2471. [PubMed] [Google Scholar]
  4. Enders G., Knotek F. Rubella IgG total antibody avidity and IgG subclass-specific antibody avidity assay and their role in the differentiation between primary rubella and rubella reinfection. Infection. 1989 Jul-Aug;17(4):218–226. doi: 10.1007/BF01639523. [DOI] [PubMed] [Google Scholar]
  5. Erdman D. D., Heath J. L., Watson J. C., Markowitz L. E., Bellini W. J. Immunoglobulin M antibody response to measles virus following primary and secondary vaccination and natural virus infection. J Med Virol. 1993 Sep;41(1):44–48. doi: 10.1002/jmv.1890410110. [DOI] [PubMed] [Google Scholar]
  6. Gray J. J., Cohen B. J., Desselberger U. Detection of human parvovirus B19-specific IgM and IgG antibodies using a recombinant viral VP1 antigen expressed in insect cells and estimation of time of infection by testing for antibody avidity. J Virol Methods. 1993 Sep;44(1):11–23. doi: 10.1016/0166-0934(93)90003-a. [DOI] [PubMed] [Google Scholar]
  7. Hedman K., Lappalainen M., Seppäiä I., Mäkelä O. Recent primary toxoplasma infection indicated by a low avidity of specific IgG. J Infect Dis. 1989 Apr;159(4):736–740. doi: 10.1093/infdis/159.4.736. [DOI] [PubMed] [Google Scholar]
  8. Hidaka Y., Aoki T., Akeda H., Miyazaki C., Ueda K. Serological and clinical characteristics of measles vaccine failure in Japan. Scand J Infect Dis. 1994;26(6):725–730. doi: 10.3109/00365549409008642. [DOI] [PubMed] [Google Scholar]
  9. Hughes I., Jenney M. E., Newton R. W., Morris D. J., Klapper P. E. Measles encephalitis during immunosuppressive treatment for acute lymphoblastic leukaemia. Arch Dis Child. 1993 Jun;68(6):775–778. doi: 10.1136/adc.68.6.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Inouye S., Hasegawa A., Matsuno S., Katow S. Changes in antibody avidity after virus infections: detection by an immunosorbent assay in which a mild protein-denaturing agent is employed. J Clin Microbiol. 1984 Sep;20(3):525–529. doi: 10.1128/jcm.20.3.525-529.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jabbour J. T., Garcia J. H., Lemmi H., Ragland J., Duenas D. A., Sever J. L. Subacute sclerosing panencephalitis. A multidisciplinary study of eight cases. JAMA. 1969 Mar 24;207(12):2248–2254. doi: 10.1001/jama.207.12.2248. [DOI] [PubMed] [Google Scholar]
  12. Johnson R. T., Griffin D. E., Hirsch R. L., Wolinsky J. S., Roedenbeck S., Lindo de Soriano I., Vaisberg A. Measles encephalomyelitis--clinical and immunologic studies. N Engl J Med. 1984 Jan 19;310(3):137–141. doi: 10.1056/NEJM198401193100301. [DOI] [PubMed] [Google Scholar]
  13. Kangro H. O., Manzoor S., Harper D. R. Antibody avidity following varicella-zoster virus infections. J Med Virol. 1991 Feb;33(2):100–105. doi: 10.1002/jmv.1890330207. [DOI] [PubMed] [Google Scholar]
  14. Kipps A., Dick G., Moodie J. W. Measles and the central nervous system. Lancet. 1983 Dec 17;2(8364):1406–1410. doi: 10.1016/s0140-6736(83)90932-7. [DOI] [PubMed] [Google Scholar]
  15. Linnemann C. C., Hegg M. E., Rotte T. C., Phair J. P., Schiff G. M. Measles IgM response during reinfection of previously vaccinated children. J Pediatr. 1973 May;82(5):798–801. doi: 10.1016/s0022-3476(73)80069-1. [DOI] [PubMed] [Google Scholar]
  16. Markowitz L. E., Preblud S. R., Fine P. E., Orenstein W. A. Duration of live measles vaccine-induced immunity. Pediatr Infect Dis J. 1990 Feb;9(2):101–110. doi: 10.1097/00006454-199002000-00008. [DOI] [PubMed] [Google Scholar]
  17. Mathias R. G., Meekison W. G., Arcand T. A., Schechter M. T. The role of secondary vaccine failures in measles outbreaks. Am J Public Health. 1989 Apr;79(4):475–478. doi: 10.2105/ajph.79.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Matsuzono Y., Narita M., Akutsu Y., Togashi T. Interleukin-6 in cerebrospinal fluid of patients with central nervous system infections. Acta Paediatr. 1995 Aug;84(8):879–883. doi: 10.1111/j.1651-2227.1995.tb13784.x. [DOI] [PubMed] [Google Scholar]
  19. Matsuzono Y., Narita M., Ishiguro N., Togashi T. Detection of measles virus from clinical samples using the polymerase chain reaction. Arch Pediatr Adolesc Med. 1994 Mar;148(3):289–293. doi: 10.1001/archpedi.1994.02170030059014. [DOI] [PubMed] [Google Scholar]
  20. Matsuzono Y., Narita M., Satake A., Togashi T., Itakura O., Ozutsumi K., Iguchi M. Measles encephalomyelitis in a patient with a history of vaccination. Acta Paediatr Jpn. 1995 Jun;37(3):374–376. doi: 10.1111/j.1442-200x.1995.tb03334.x. [DOI] [PubMed] [Google Scholar]
  21. Mustafa M. M., Weitman S. D., Winick N. J., Bellini W. J., Timmons C. F., Siegel J. D. Subacute measles encephalitis in the young immunocompromised host: report of two cases diagnosed by polymerase chain reaction and treated with ribavirin and review of the literature. Clin Infect Dis. 1993 May;16(5):654–660. doi: 10.1093/clind/16.5.654. [DOI] [PubMed] [Google Scholar]
  22. Ozanne G., d'Halewyn M. A. Performance and reliability of the Enzygnost measles enzyme-linked immuno-sorbent assay for detection of measles virus-specific immunoglobulin M antibody during a large measles epidemic. J Clin Microbiol. 1992 Mar;30(3):564–569. doi: 10.1128/jcm.30.3.564-569.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ramsay M. E., Moffatt D., O'Connor M. Measles vaccine: a 27-year follow-up. Epidemiol Infect. 1994 Apr;112(2):409–412. doi: 10.1017/s0950268800057824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ratnam S., Gadag V., West R., Burris J., Oates E., Stead F., Bouilianne N. Comparison of commercial enzyme immunoassay kits with plaque reduction neutralization test for detection of measles virus antibody. J Clin Microbiol. 1995 Apr;33(4):811–815. doi: 10.1128/jcm.33.4.811-815.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rousseau S., Hedman K. Rubella infection and reinfection distinguished by avidity of IgG. Lancet. 1988 May 14;1(8594):1108–1109. doi: 10.1016/s0140-6736(88)91926-5. [DOI] [PubMed] [Google Scholar]
  26. Thomas H. I., Morgan-Capner P. Rubella-specific IgG subclass avidity ELISA and its role in the differentiation between primary rubella and rubella reinfection. Epidemiol Infect. 1988 Dec;101(3):591–598. doi: 10.1017/s0950268800029459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tibbling G., Link H., Ohman S. Principles of albumin and IgG analyses in neurological disorders. I. Establishment of reference values. Scand J Clin Lab Invest. 1977 Sep;37(5):385–390. doi: 10.1080/00365517709091496. [DOI] [PubMed] [Google Scholar]
  28. Tuokko H. Detection of acute measles infections by indirect and mu-capture enzyme immunoassays for immunoglobulin M antibodies and measles immunoglobulin G antibody avidity enzyme immunoassay. J Med Virol. 1995 Mar;45(3):306–311. doi: 10.1002/jmv.1890450312. [DOI] [PubMed] [Google Scholar]
  29. Valmari P., Lanning M., Tuokko H., Kouvalainen K. Measles virus in the cerebrospinal fluid in postvaccination immunosuppressive measles encephalopathy. Pediatr Infect Dis J. 1987 Jan;6(1):59–63. doi: 10.1097/00006454-198701000-00015. [DOI] [PubMed] [Google Scholar]
  30. Ward K. N., Gray J. J., Joslin M. E., Sheldon M. J. Avidity of IgG antibodies to human herpesvirus-6 distinguishes primary from recurrent infection in organ transplant recipients and excludes cross-reactivity with other herpesviruses. J Med Virol. 1993 Jan;39(1):44–49. doi: 10.1002/jmv.1890390109. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Diagnostic Laboratory Immunology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES