Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1970 Oct;40(2):175–185. doi: 10.1111/j.1476-5381.1970.tb09911.x

An assessment of the role of the sympathetic nervous system in experimental hypertension using normal and immunosympathectomized rats

E Ayitey-Smith, D R Varma
PMCID: PMC1702887  PMID: 5492890

Abstract

1. The role of the sympathetic nervous system in experimental hypertension and associated changes in aortic sodium and potassium was studied using normal and immunosympathectomized Sprague-Dawley rats.

2. A single injection of antiserum to nerve-growth factor to rats at birth produced less intensive destruction of the peripheral sympathetic system than did two injections (one daily for 2 days). The former are referred to as “partial” immunosympathectomized and the latter as “total” immunosympathectomized rats.

3. Maintenance of rats on 1% sodium chloride after unilateral nephrectomy and implantation of 40 mg desoxycorticosterone acetate (DOCA) pellets resulted in sustained DOCA-NaCl hypertension in both normal and “partial” immunosympathectomized rats but not in “total” immunosympathectomized rats. Hypertension was associated with an increase in aortic sodium.

4. Constriction of one renal artery with contralateral nephrectomy caused sustained hypertension and an increase in aortic sodium in normal and “partial” immunosympathectomized rats. Renal hypertension in “total” immunosympathectomized rats was not sustained.

5. It is concluded that a certain minimum control of the cardiovascular system by the sympathetic system is essential for the production of experimental hypertension and associated electrolyte changes.

Full text

PDF
175

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOLING E. A. A FLAME PHOTOMETER WITH SIMULTANEOUS DIGITAL READOUT FOR SODIUM AND POTASSIUM. J Lab Clin Med. 1964 Mar;63:501–510. [PubMed] [Google Scholar]
  2. BRODY M. J. CARDIOVASCULAR RESPONSES FOLLOWING IMMUNOLOGICAL SYMPATHECTOMY. Circ Res. 1964 Aug;15:161–167. doi: 10.1161/01.res.15.2.161. [DOI] [PubMed] [Google Scholar]
  3. BRUNJES S. CATECHOL AMINE METABOLISM IN ESSENTIAL HYPERTENSION. N Engl J Med. 1964 Jul 16;271:120–124. doi: 10.1056/NEJM196407162710303. [DOI] [PubMed] [Google Scholar]
  4. Cohen S. PURIFICATION OF A NERVE-GROWTH PROMOTING PROTEIN FROM THE MOUSE SALIVARY GLAND AND ITS NEURO-CYTOTOXIC ANTISERUM. Proc Natl Acad Sci U S A. 1960 Mar;46(3):302–311. doi: 10.1073/pnas.46.3.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DeQuattro V., Nagatsu T., Maronde R., Alexander N. Catecholamine synthesis in rabbits with neurogenic hypertension. Circ Res. 1969 Apr;24(4):545–555. doi: 10.1161/01.res.24.4.545. [DOI] [PubMed] [Google Scholar]
  6. GILL J. R., Jr, MASON D. T., BARTTER F. C. ADRENERGIC NERVOUS SYSTEM IN SODIUM METABOLISM: EFFECTS OF GUANETHIDINE AND SODIUM-RETAINING STEROIDS IN NORMAL MAN. J Clin Invest. 1964 Feb;43:177–184. doi: 10.1172/JCI104902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GITLOW S. E., MENDLOWITZ M., WILK E. K., WILK S., WOLF R. L., NAFTCHI N. E. PLASMA CLEARANCE OF DL-BETA-H3-NOREPINEPHRINE IN NORMAL HUMAN SUBJECTS AND PATIENTS WITH ESSENTIAL HYPERTENSION. J Clin Invest. 1964 Oct;43:2009–2015. doi: 10.1172/JCI105075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Iversen L. L., Glowinski J., Axelrod J. The physiologic disposition and metabolism of norepinephrine in immunosympathectomized animals. J Pharmacol Exp Ther. 1966 Feb;151(2):273–284. [PubMed] [Google Scholar]
  9. Krakoff L. R., de Champlain J., Axelrod J. Abnormal storage of norepinephrine in experimental hypertension in the rat. Circ Res. 1967 Nov;21(5):583–591. doi: 10.1161/01.res.21.5.583. [DOI] [PubMed] [Google Scholar]
  10. Laragh J. H. Renin, angiotensin, aldosterone and hormonal regulation of arterial pressure and salt balance. Introductory remarks. Fed Proc. 1967 Jan-Feb;26(1):39–41. [PubMed] [Google Scholar]
  11. Louis W. J., Spector S., Tabei R., Sjoerdsma A. Synthesis and turnover of norepinephrine in the heart of the spontaneously hypertensive rat. Circ Res. 1969 Jan;24(1):85–91. doi: 10.1161/01.res.24.1.85. [DOI] [PubMed] [Google Scholar]
  12. Neff N. H., Ngai S. H., Wang C. T., Costa E. Calculation of the rate of catecholamine synthesis from the rate of conversion of tyrosine-14C to catecholamines. Effect of adrenal demedullation on synthesis rates. Mol Pharmacol. 1969 Jan;5(1):90–99. [PubMed] [Google Scholar]
  13. TOBIAN L., Jr, BINION J. Artery wall electrolytes in renal and DCA hypertension. J Clin Invest. 1954 Oct;33(10):1407–1414. doi: 10.1172/JCI103018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Varma D. R. Antihypertensive effect of methyldopa in metacorticoid immunosympathectomized rats. J Pharm Pharmacol. 1967 Jan;19(1):61–62. doi: 10.1111/j.2042-7158.1967.tb07998.x. [DOI] [PubMed] [Google Scholar]
  15. Zaimis E., Berk L., Callingham B. A. Morphological, biochemical and functional changes in the sympathetic nervous system of rats treated with nerve growth factor-antiserum. Nature. 1965 Jun 19;206(990):1220–1222. doi: 10.1038/2061220a0. [DOI] [PubMed] [Google Scholar]
  16. de Champlain J., Krakoff L. R., Axelrod J. A reduction in the accumulation of H3-norepinephrine in experimental hypertension. Life Sci. 1966 Dec;5(24):2283–2291. doi: 10.1016/0024-3205(66)90064-6. [DOI] [PubMed] [Google Scholar]
  17. de Champlain J., Krakoff L. R., Axelrod J. Catecholamine metabolism in experimental hypertension in the rat. Circ Res. 1967 Jan;20(1):136–145. doi: 10.1161/01.res.20.1.136. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES