Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1970 Dec;40(4):814–826. doi: 10.1111/j.1476-5381.1970.tb10657.x

Effects of sulphydryl inhibitors on frog sartorius muscle

P-chloromercuribenzoic acid and p-chloromercuribenzenesulphonic acid

E B Kirsten, A S Kuperman
PMCID: PMC1702908  PMID: 4992957

Abstract

1. Experiments were done on frog sartorius muscles to study the effects and mechanisms of action of the -SH inhibitors, p-chloromercuribenzoic acid (PCMB) and p-chloromercuribenzenesulphonic acid (PCMBS).

2. Both organomercurials produce a depolarization of the surface membrane which is associated with a period of asynchronous twitching and followed by inexcitability.

3. Only PCMB produces a unique fractionation of the electrically evoked twitch into an initial rapid and later slow phase.

4. PCMB and PCMBS increase the rate of 45Ca efflux from whole muscle. Ethylenediamine tetraacetic acid (EDTA, 5 mM) causes only limited antagonism of the enhancement of 45Ca efflux produced by PCMB whereas it completely antagonizes this same effect of PCMBS. EDTA selectively removes superficial calcium without penetrating into the intracellular space.

5. The results suggest that PCMB inhibits -SH groups in the terminal cisternae causing a fractionation of the twitch. PCMBS acts primarily at surface sites with limited access to the cisternae and sarcoplasmic reticulum.

Full text

PDF
814

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIANCHI C. P. THE EFFECT OF EDTA AND SCN ON RADIOCALCIUM MOVEMENT IN FROG RECTUS ABDOMINIS MUSCLE DURING CONTRACTURES INDUCED BY CALCIUM REMOVAL. J Pharmacol Exp Ther. 1965 Mar;147:360–370. [PubMed] [Google Scholar]
  2. Bianchi C. P., Bolton T. C. Action of local anesthetics on coupling systems in muscle. J Pharmacol Exp Ther. 1967 Aug;157(2):388–405. [PubMed] [Google Scholar]
  3. CARSTEN M. E., MOMMAERTS W. F. THE ACCUMULATION OF CALCIUM IONS BY SARCOTUBULAR VESICLES. J Gen Physiol. 1964 Nov;48:183–197. doi: 10.1085/jgp.48.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carvalho A. P. Calcium-binding properties of sarcoplasmic reticulum as influenced by ATP, caffeine, quinine, and local anesthetics. J Gen Physiol. 1968 Oct;52(4):622–642. doi: 10.1085/jgp.52.4.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FEINSTEIN M. B. INHIBITION OF CAFFEINE RIGOR AND RADIOCALCIUM MOVEMENTS BY LOCAL ANESTHETICS IN FROG SARTORIUS MUSCLE. J Gen Physiol. 1963 Sep;47:151–172. doi: 10.1085/jgp.47.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Isaacson A., Sandow A. Quinine and caffeine effects on 45Ca movements in frog sartorius muscle. J Gen Physiol. 1967 Sep;50(8):2109–2128. doi: 10.1085/jgp.50.8.2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. KOKETSU K., NODA K. Membrane responses of frog skeletal muscle fibers in calcium-free media. J Cell Comp Physiol. 1962 Jun;59:323–332. doi: 10.1002/jcp.1030590312. [DOI] [PubMed] [Google Scholar]
  8. Kuperman A. S., Altura B. T., Chezar J. A. Action of procaine on calcium efflux from frog nerve and muscle. Nature. 1968 Feb 17;217(5129):673–675. doi: 10.1038/217673a0. [DOI] [PubMed] [Google Scholar]
  9. LEVY H. M., RYAN E. M. EVIDENCE THAT CALCIUM ACTIVATES THE CONTRACTION OF ACTOMYOSIN BY OVERCOMING SUBSTRATE INHIBITION. Nature. 1965 Feb 13;205:703–705. doi: 10.1038/205703b0. [DOI] [PubMed] [Google Scholar]
  10. Okamoto M., Kuperman A. S. Muscle contraction produced by sulphydryl inhibitors. Nature. 1966 Jun 4;210(5040):1062–1063. doi: 10.1038/2101062a0. [DOI] [PubMed] [Google Scholar]
  11. Rega A. F., Rothstein A., Weed R. I. Erythrocyte membrane sulfhydryl groups and the active transport of cations. J Cell Physiol. 1967 Aug;70(1):45–52. doi: 10.1002/jcp.1040700107. [DOI] [PubMed] [Google Scholar]
  12. SHANES A. M., BIANCHI C. P. The distribution and kinetics of release of radiocalcium in tendon and skeletal muscle. J Gen Physiol. 1959 May 20;42(5):1123–1137. doi: 10.1085/jgp.42.5.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. SMITH H. M. Effects of sulfhydryl blockade on axonal function. J Cell Physiol. 1958 Apr;51(2):161–171. doi: 10.1002/jcp.1030510203. [DOI] [PubMed] [Google Scholar]
  14. VANSTEVENINCK J., WEED R. I., ROTHSTEIN A. LOCALIZATION OF ERYTHROCYTE MEMBRANE SULFHYDRYL GROUPS ESSENTIAL FOR GLUCOSE TRANSPORT. J Gen Physiol. 1965 Mar;48:617–632. doi: 10.1085/jgp.48.4.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Weber A., Herz R. The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J Gen Physiol. 1968 Nov;52(5):750–759. doi: 10.1085/jgp.52.5.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Winegrad S. Intracellular calcium movements of frog skeletal muscle during recovery from tetanus. J Gen Physiol. 1968 Jan;51(1):65–83. doi: 10.1085/jgp.51.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Yasui B., Fuchs F., Briggs F. N. The role of the sulfhydryl groups of tropomyosin and troponin in the calcium control of actomyosin contractility. J Biol Chem. 1968 Feb 25;243(4):735–742. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES