Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1970 Dec;40(4):702–720. doi: 10.1111/j.1476-5381.1970.tb10648.x

Acceleration of noradrenaline biosynthesis in the guinea-pig vas deferens by potassium

Margaret C Boadle-Biber, J Hughes, R H Roth
PMCID: PMC1702916  PMID: 5495175

Abstract

1. Increasing the concentration of KCl in Krebs-Henseleit bicarbonate solution enhanced the formation of 14C-noradrenaline (14C-NA) from 14C-tyrosine in the guinea-pig vas deferens. In 52 mM KCl Krebs-Henseleit solution the specific activity of the newly formed 14C-NA was double that of controls.

2. The rate of synthesis of 14C-NA from 14C-tyrosine was constant for up to 2 h in 52 mM KCl Krebs-Henseleit solution and for 4 h in unmodified Krebs-Henseleit solution.

3. There was no increase in NA formation in the presence of KCl rich Krebs-Henseleit solution if 14C-DOPA was used as the starting substrate instead of 14C-tyrosine.

4. The specific activity of 14C-tyrosine in the high KCl treated vas deferens was 80% of that of control tissues. Thus the enhanced synthesis of 14C-NA in high KCl Krebs-Henseleit solution did not arise from an increase in the specific activity of precursor.

5. The effect of K+ on NA synthesis was not mimicked by ganglionic stimulants nor blocked by tetrodotoxin.

6. Removal of Ca2+ ions or increasing the concentration of Mg2+ ions abolished the increase in synthesis of NA seen in high KCl Krebs-Henseleit solution but left the basal rate of NA synthesis in unmodified Krebs-Henseleit solution unaltered.

7. The spontaneous release of newly synthesized catecholamines (14C-labelled) or tritiated noradrenaline (3H-NA) from vasa deferentia was increased in 52 mM KCl Krebs-Henseleit solution. Removal of Ca2+ ions reduced the increased efflux of newly synthesized amine in high KCl media to that seen in unmodified Krebs-Henseleit solution. The efflux of 3H-NA was reduced to one-third of its former rate in the absence of Ca2+.

8. High KCl Krebs-Henseleit solution caused a substantial contraction of the vas deferens which was not abolished by tetrodotoxin. Release of 3H-NA paralleled the contractile response, and was likewise unaffected by tetrodotoxin.

9. No evidence was obtained for any alterations in the activity of tyrosine hydroxylase, the rate limiting enzyme in the formation of NA from tyrosine, in homogenates of vas deferens which had been treated with 52 mM KCl Krebs-Henseleit solution.

10. These results support the hypothesis that acceleration of NA synthesis occurs when tyrosine hydroxylase is freed from end-product inhibition by the release of noradrenaline, brought about in this case, by high concentrations of KCl.

Full text

PDF
702

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alousi A., Weiner N. The regulation of norepinephrine synthesis in sympathetic nerves: effect of nerve stimulation, cocaine, and catecholamine-releasing agents. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1491–1496. doi: 10.1073/pnas.56.5.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Austin L., Livett B. G., Chubb I. W. Increased synthesis and release of noradrenaline and dopamine during nerve stimulation. Life Sci. 1967 Jan 1;6(1):97–104. doi: 10.1016/0024-3205(67)90366-9. [DOI] [PubMed] [Google Scholar]
  3. BENTLEY G. A., SABINE J. R. THE EFFECTS OF GANGLION-BLOCKING AND POSTGANGLIONIC SYMPATHOLYTIC DRUGS ON PREPARATIONS OF THE GUINEA-PIG VAS DEFERENS. Br J Pharmacol Chemother. 1963 Aug;21:190–201. doi: 10.1111/j.1476-5381.1963.tb01515.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BIRMINGHAM A. T., WILSON A. B. PREGANGLIONIC AND POSTGANGLIONIC STIMULATION OF THE GUINEA-PIG ISOLATED VAS DEFERENS PREPARATION. Br J Pharmacol Chemother. 1963 Dec;21:569–580. doi: 10.1111/j.1476-5381.1963.tb02024.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Birmingham A. T. Sympathetic denervation of the smooth muscle of the vas deferens. J Physiol. 1970 Mar;206(3):645–661. doi: 10.1113/jphysiol.1970.sp009035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blakeley A. G., Dearnaley D. P., Harrison V. The noradrenaline content of the vas deferens of the guinea-pig. Proc R Soc Lond B Biol Sci. 1970 Jan 20;174(1037):491–502. doi: 10.1098/rspb.1970.0007. [DOI] [PubMed] [Google Scholar]
  7. Bogdanski D. F., Brodie B. B. The effects of inorganic ions on the storage and uptake of H3-norepinephrine by rat heart slices. J Pharmacol Exp Ther. 1969 Feb;165(2):181–189. [PubMed] [Google Scholar]
  8. Boullin D. J. The action of extracellular cations on the release of the sympathetic transmitter from peripheral nerves. J Physiol. 1967 Mar;189(1):85–99. doi: 10.1113/jphysiol.1967.sp008156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bülbring E., Tomita T. Properties of the inhibitory potential of smooth muscle as observed in the response to field stimulation of the guinea-pig taenia coli. J Physiol. 1967 Apr;189(2):299–315. doi: 10.1113/jphysiol.1967.sp008169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dairman W., Gordon R., Spector S., Sjoerdsma A., Udenfriend S. Increased synthesis of catecholamines in the intact rat following administration of alpha-adrenergic blocking agents. Mol Pharmacol. 1968 Sep;4(5):457–464. [PubMed] [Google Scholar]
  11. Ferry C. B. The innervation of the vas deferens of the guinea-pig. J Physiol. 1967 Sep;192(2):463–478. doi: 10.1113/jphysiol.1967.sp008309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GUROFF G., KING W., UNDENFRIEND S. The uptake of tyrosine by rat brain in vitro. J Biol Chem. 1961 Jun;236:1773–1777. [PubMed] [Google Scholar]
  13. Gershon M. D. Effects of tetrodotoxin on innervated smooth muscle preparations. Br J Pharmacol Chemother. 1967 Mar;29(3):259–279. doi: 10.1111/j.1476-5381.1967.tb01958.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gordon R., Reid J. V., Sjoerdsma A., Udenfriend S. Increased synthesis of norepinephrine in the rat heart on electrical stimulation of the stellate ganglia. Mol Pharmacol. 1966 Nov;2(6):610–613. [PubMed] [Google Scholar]
  15. Gordon R., Spector S., Sjoerdsma A., Udenfriend S. Increased synthesis of norepinephrine and epinephrine in the intact rat during exercise and exposure to cold. J Pharmacol Exp Ther. 1966 Sep;153(3):440–447. [PubMed] [Google Scholar]
  16. Ikeda M., Fahien L. A., Udenfriend S. A kinetic study of bovine adrenal tyrosine hydroxylase. J Biol Chem. 1966 Oct 10;241(19):4452–4456. [PubMed] [Google Scholar]
  17. Kopin I. J., Breese G. R., Krauss K. R., Weise V. K. Selective release of newly synthesized norepinephrine from the cat spleen during sympathetic nerve stimulation. J Pharmacol Exp Ther. 1968 Jun;161(2):271–278. [PubMed] [Google Scholar]
  18. Mueller R. A., Thoenen H., Axelrod J. Increase in tyrosine hydroxylase activity after reserpine administration. J Pharmacol Exp Ther. 1969 Sep;169(1):74–79. [PubMed] [Google Scholar]
  19. Musacchio J. M. Beef adrenal medulla dihydropteridine reductase. Biochim Biophys Acta. 1969 Nov 4;191(2):485–487. doi: 10.1016/0005-2744(69)90272-1. [DOI] [PubMed] [Google Scholar]
  20. NAGATSU T., LEVITT M., UDENFRIEND S. TYROSINE HYDROXYLASE. THE INITIAL STEP IN NOREPINEPHRINE BIOSYNTHESIS. J Biol Chem. 1964 Sep;239:2910–2917. [PubMed] [Google Scholar]
  21. Oliverio A., Stjärne L. Acceleration of noradrenaline turnover in the mouse heart by cold exposure. Life Sci. 1965 Dec;4(23):2339–2343. doi: 10.1016/0024-3205(65)90258-4. [DOI] [PubMed] [Google Scholar]
  22. ROSZKOWSKI A. P. An unusual type of sympathetic ganglionic stimulant. J Pharmacol Exp Ther. 1961 May;132:156–170. [PubMed] [Google Scholar]
  23. Roth R. H., Boadle M., Hughes J. Acceleration of the rate limiting step in norepinephrine biosynthesis by potassium. Experientia. 1970 May 15;26(5):494–495. doi: 10.1007/BF01898465. [DOI] [PubMed] [Google Scholar]
  24. Roth R. H., Stjärne L., von Euler U. S. Acceleration of noradrenaline biosynthesis by nerve stimulation. Life Sci. 1966 Jun;5(12):1071–1075. doi: 10.1016/0024-3205(66)90089-0. [DOI] [PubMed] [Google Scholar]
  25. Roth R. H., Stjärne L., von Euler U. S. Factors influencing the rate of norepinephrine biosynthesis in nerve tissue. J Pharmacol Exp Ther. 1967 Dec;158(3):373–377. [PubMed] [Google Scholar]
  26. Roth R. H., Stone E. A. The action of reserpine on noradrenaline biosynthesis in sympathetic nerve tissue. Biochem Pharmacol. 1968 Aug;17(8):1581–1590. doi: 10.1016/0006-2952(68)90218-9. [DOI] [PubMed] [Google Scholar]
  27. SJOSTRAND N. O. Inhibition by ganglionic blocking agents of the motor response of the isolated guinea-pig vas deferens to hypogastric nerve stimulation. Acta Physiol Scand. 1962 Mar-Apr;54:306–315. doi: 10.1111/j.1748-1716.1962.tb02354.x. [DOI] [PubMed] [Google Scholar]
  28. Sedvall G. C., Kopin I. J. Acceleration of norepinephrine synthesis in the rat submaxillary gland in vivo during sympathetic nerve stimulation. Life Sci. 1967 Jan 1;6(1):45–51. doi: 10.1016/0024-3205(67)90360-8. [DOI] [PubMed] [Google Scholar]
  29. Spector S. Inhibitors of endogenous catecholamine biosynthesis. Pharmacol Rev. 1966 Mar;18(1):599–609. [PubMed] [Google Scholar]
  30. Stjärne L., Lishajko F. Drug-induced inhibition of noradrenaline synthesis in vitro in bovine splenic nerve tissue. Br J Pharmacol Chemother. 1966 Aug;27(2):398–404. doi: 10.1111/j.1476-5381.1966.tb01671.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stjärne L., Lishajko F. Localization of different steps in noradrenaline synthesis to different fractions of a bovine splenic nerve homogenate. Biochem Pharmacol. 1967 Sep 9;16(9):1719–1728. doi: 10.1016/0006-2952(67)90247-x. [DOI] [PubMed] [Google Scholar]
  32. WONG P. W., O'FLYNN M. E., INOUYE T. MICROMETHODS FOR MEASURING PHENYLALANINE AND TYROSINE IN SERUM. Clin Chem. 1964 Dec;10:1098–1104. [PubMed] [Google Scholar]
  33. Weiner N., Rabadjija M. The effect of nerve stimulation on the synthesis and metabolism of norepinephrine in the isolated guinea-pig hypogastric nerve-vas deferens preparation. J Pharmacol Exp Ther. 1968 Mar;160(1):61–71. [PubMed] [Google Scholar]
  34. Weiner N. Regulation of norepinephrine biosynthesis. Annu Rev Pharmacol. 1970;10:273–290. doi: 10.1146/annurev.pa.10.040170.001421. [DOI] [PubMed] [Google Scholar]
  35. von EULER U., LISHAJKO F. The estimation of catechol amines in urine. Acta Physiol Scand. 1959 Mar 31;45:122–132. doi: 10.1111/j.1748-1716.1959.tb01684.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES