Abstract
1. The characteristic action of the -SH inhibitor, N-ethylmaleimide (NEM), is muscle rigour. The dose-response curve indicates a biphasic effect with maximum rigour tension produced by 1·0 mM NEM; beyond 1·0 mM there was an inverse relationship between dose and response.
2. NEM produces a membrane depolarization unrelated to rigour development.
3. NEM causes a sustained increase in 45Ca efflux from whole muscle. Pretreatment of a muscle with ethylenediamine tetra-acetic acid (EDTA, 5 mM) to remove membrane calcium does not alter the NEM induced 45Ca efflux.
4. It is suggested that the primary site of NEM action is inhibition of calcium uptake by the sarcoplasmic reticulum thereby producing rigour. At concentrations above 1·0 mM, NEM may affect the myofilaments.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BIANCHI C. P. Action on calcium movements in frog sartorius muscles by drugs producing rigor. J Cell Comp Physiol. 1963 Jun;61:255–263. doi: 10.1002/jcp.1030610307. [DOI] [PubMed] [Google Scholar]
- BIANCHI C. P. THE EFFECT OF EDTA AND SCN ON RADIOCALCIUM MOVEMENT IN FROG RECTUS ABDOMINIS MUSCLE DURING CONTRACTURES INDUCED BY CALCIUM REMOVAL. J Pharmacol Exp Ther. 1965 Mar;147:360–370. [PubMed] [Google Scholar]
- BLUM J. J. Observations on the role of sulfhydryl groups in the functioning of actomyosin. Arch Biochem Biophys. 1962 May;97:321–328. doi: 10.1016/0003-9861(62)90084-x. [DOI] [PubMed] [Google Scholar]
- Bailin G., Bárány M. Studies on actin-actin and actin-myosin interaction. Biochim Biophys Acta. 1967 Jun 27;140(2):208–221. doi: 10.1016/0005-2795(67)90461-8. [DOI] [PubMed] [Google Scholar]
- Bianchi C. P. The Effect of Caffeine on Radiocalcium Movement in Frog Sartorius. J Gen Physiol. 1961 May 1;44(5):845–858. doi: 10.1085/jgp.44.5.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hasselbach W. Structural and enzymatic properties of the calcium transporting membranes of the sarcoplasmic reticulum. Ann N Y Acad Sci. 1966 Jul 14;137(2):1041–1048. doi: 10.1111/j.1749-6632.1966.tb50216.x. [DOI] [PubMed] [Google Scholar]
- Huneeus-Cox F., Fernandez H. L., Smith B. H. Effects of redox and sulfhydryl reagents on the bioelectric properties of the giant axon of the squid. Biophys J. 1966 Sep;6(5):675–689. doi: 10.1016/S0006-3495(66)86686-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isaacson A., Sandow A. Quinine and caffeine effects on 45Ca movements in frog sartorius muscle. J Gen Physiol. 1967 Sep;50(8):2109–2128. doi: 10.1085/jgp.50.8.2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isaacson A., Yamaji K., Sandow A. Quinine contractures and Ca45 movements of frog sartorius muscles as affected by pH. J Pharmacol Exp Ther. 1970 Jan;171(1):26–31. [PubMed] [Google Scholar]
- JACOB H. S., JANDL J. H. Effects of sulfhydryl inhibition on red blood cells. I. Mechanism of hemolysis. J Clin Invest. 1962 Apr;41:779–792. doi: 10.1172/JCI104536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirsten E. B., Kuperman A. S. Effects of sulphydryl inhibitors on frog sartorius muscle: p-chloromercuribenzenesulphonic acid. Br J Pharmacol. 1970 Dec;40(4):814–826. doi: 10.1111/j.1476-5381.1970.tb10657.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okamoto M., Kuperman A. S. Muscle contraction produced by sulphydryl inhibitors. Nature. 1966 Jun 4;210(5040):1062–1063. doi: 10.1038/2101062a0. [DOI] [PubMed] [Google Scholar]
- Sandow A., Isaacson A. Topochemical factors in potentiation of contraction by heavy metal cations. J Gen Physiol. 1966 May;49(5):937–961. doi: 10.1085/jgp.49.5.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandow A. Skeletal muscle. Annu Rev Physiol. 1970;32:87–138. doi: 10.1146/annurev.ph.32.030170.000511. [DOI] [PubMed] [Google Scholar]
- Yasui B., Fuchs F., Briggs F. N. The role of the sulfhydryl groups of tropomyosin and troponin in the calcium control of actomyosin contractility. J Biol Chem. 1968 Feb 25;243(4):735–742. [PubMed] [Google Scholar]