Abstract
Natural killer cells (NK cells) are a subset of peripheral blood lymphocytes that mediate non-major histocompatibility complex-restricted cytotoxicity of foreign target cells. The "gold standard" assay for NK cell activity has been the chromium release assay. This method is not easily performed in the clinical laboratory because of difficulties with disposal of radioactive and hazardous materials, short reagent half-lives, expense, and difficulties with assay standardization. We describe a flow cytometric assay for the clinical measurement of NK cell activity. This study compared the chromium release assay and the flow cytometric assay by using clinically relevant specimens. There were no significant differences between the two assays in the measurement of lytic activity for 17 peripheral blood specimens or in reproducibility in repeated samplings of healthy individuals. We also established a normal range of values for NK activity in healthy adults and identified a small cluster of individuals who have exceptionally high or low levels of NK activity. The flow cytometric assay was validated by testing specimens from subjects expected to have abnormally low levels of NK activity (pregnant women) and specimens from healthy individuals in whom the activity of NK cells was enhanced by exposure to interleukin-2 or alpha interferon. Treatment with these agents was associated with a significant increase in NK activity. These results confirm and extend those of others, showing that the flow cytometric assay is a viable alternative to the chromium release assay for measuring NK cell activity.
Full Text
The Full Text of this article is available as a PDF (248.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arteaga C. L., Hurd S. D., Winnier A. R., Johnson M. D., Fendly B. M., Forbes J. T. Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression. J Clin Invest. 1993 Dec;92(6):2569–2576. doi: 10.1172/JCI116871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bajpai A., Brahmi Z. Target cell-induced inactivation of cytolytic lymphocytes. Role and regulation of CD45 and calyculin A-inhibited phosphatase in response to interleukin-2. J Biol Chem. 1994 Jul 22;269(29):18864–18869. [PubMed] [Google Scholar]
- Caligiuri M. A., Murray C., Robertson M. J., Wang E., Cochran K., Cameron C., Schow P., Ross M. E., Klumpp T. R., Soiffer R. J. Selective modulation of human natural killer cells in vivo after prolonged infusion of low dose recombinant interleukin 2. J Clin Invest. 1993 Jan;91(1):123–132. doi: 10.1172/JCI116161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang L., Gusewitch G. A., Chritton D. B., Folz J. C., Lebeck L. K., Nehlsen-Cannarella S. L. Rapid flow cytometric assay for the assessment of natural killer cell activity. J Immunol Methods. 1993 Nov 5;166(1):45–54. doi: 10.1016/0022-1759(93)90327-4. [DOI] [PubMed] [Google Scholar]
- Hansen K. A., Opsahl M. S., Nieman L. K., Baker J. R., Jr, Klein T. A. Natural killer cell activity from pregnant subjects is modulated by RU 486. Am J Obstet Gynecol. 1992 Jan;166(1 Pt 1):87–90. doi: 10.1016/0002-9378(92)91835-x. [DOI] [PubMed] [Google Scholar]
- Hatam L., Schuval S., Bonagura V. R. Flow cytometric analysis of natural killer cell function as a clinical assay. Cytometry. 1994 May 1;16(1):59–68. doi: 10.1002/cyto.990160109. [DOI] [PubMed] [Google Scholar]
- Henney C. S., Kuribayashi K., Kern D. E., Gillis S. Interleukin-2 augments natural killer cell activity. Nature. 1981 May 28;291(5813):335–338. doi: 10.1038/291335a0. [DOI] [PubMed] [Google Scholar]
- Herberman R. R., Ortaldo J. R., Bonnard G. D. Augmentation by interferon of human natural and antibody-dependent cell-mediated cytotoxicity. Nature. 1979 Jan 18;277(5693):221–223. doi: 10.1038/277221a0. [DOI] [PubMed] [Google Scholar]
- Hercend T., Schmidt R. E. Characteristics and uses of natural killer cells. Immunol Today. 1988 Oct;9(10):291–293. doi: 10.1016/0167-5699(88)91317-5. [DOI] [PubMed] [Google Scholar]
- Hidaka Y., Amino N., Iwatani Y., Kaneda T., Nasu M., Mitsuda N., Tanizawa O., Miyai K. Increase in peripheral natural killer cell activity in patients with autoimmune thyroid disease. Autoimmunity. 1992;11(4):239–246. doi: 10.3109/08916939209035161. [DOI] [PubMed] [Google Scholar]
- Imamura N., Kusunoki Y., Kawa-Ha K., Yumura K., Hara J., Oda K., Abe K., Dohy H., Inada T., Kajihara H. Aggressive natural killer cell leukaemia/lymphoma: report of four cases and review of the literature. Possible existence of a new clinical entity originating from the third lineage of lymphoid cells. Br J Haematol. 1990 May;75(1):49–59. doi: 10.1111/j.1365-2141.1990.tb02615.x. [DOI] [PubMed] [Google Scholar]
- Levy S. M., Herberman R. B., Simons A., Whiteside T., Lee J., McDonald R., Beadle M. Persistently low natural killer cell activity in normal adults: immunological, hormonal and mood correlates. Nat Immun Cell Growth Regul. 1989;8(3):173–186. [PubMed] [Google Scholar]
- Liu W. J., Hansen P. J. Effect of the progesterone-induced serpin-like proteins of the sheep endometrium on natural-killer cell activity in sheep and mice. Biol Reprod. 1993 Nov;49(5):1008–1014. doi: 10.1095/biolreprod49.5.1008. [DOI] [PubMed] [Google Scholar]
- Michie H. J., Head J. R. Tenascin in pregnant and non-pregnant rat uterus: unique spatio-temporal expression during decidualization. Biol Reprod. 1994 Jun;50(6):1277–1286. doi: 10.1095/biolreprod50.6.1277. [DOI] [PubMed] [Google Scholar]
- Moretta L., Ciccone E., Poggi A., Mingari M. C., Moretta A. Origin and functions of human natural killer cells. Int J Clin Lab Res. 1994;24(4):181–186. doi: 10.1007/BF02592459. [DOI] [PubMed] [Google Scholar]
- Nagler A., Lanier L. L., Cwirla S., Phillips J. H. Comparative studies of human FcRIII-positive and negative natural killer cells. J Immunol. 1989 Nov 15;143(10):3183–3191. [PubMed] [Google Scholar]
- Naume B., Espevik T. Immunoregulatory effects of cytokines on natural killer cells. Scand J Immunol. 1994 Aug;40(2):128–134. doi: 10.1111/j.1365-3083.1994.tb03441.x. [DOI] [PubMed] [Google Scholar]
- Opsahl M., Hansen K., Klein T., Cunningham D. Natural killer cell activity in early human pregnancy. Gynecol Obstet Invest. 1994;37(4):226–228. doi: 10.1159/000292564. [DOI] [PubMed] [Google Scholar]
- Rook A. H., Masur H., Lane H. C., Frederick W., Kasahara T., Macher A. M., Djeu J. Y., Manischewitz J. F., Jackson L., Fauci A. S. Interleukin-2 enhances the depressed natural killer and cytomegalovirus-specific cytotoxic activities of lymphocytes from patients with the acquired immune deficiency syndrome. J Clin Invest. 1983 Jul;72(1):398–403. doi: 10.1172/JCI110981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sewell H. F., Halbert C. F., Robins R. A., Galvin A., Chan S., Blamey R. W. Chemotherapy-induced differential changes in lymphocyte subsets and natural-killer-cell function in patients with advanced breast cancer. Int J Cancer. 1993 Nov 11;55(5):735–738. doi: 10.1002/ijc.2910550506. [DOI] [PubMed] [Google Scholar]
- Srour E. F., Leemhuis T., Jenski L., Redmond R., Jansen J. Cytolytic activity of human natural killer cell subpopulations isolated by four-color immunofluorescence flow cytometric cell sorting. Cytometry. 1990;11(3):442–446. doi: 10.1002/cyto.990110316. [DOI] [PubMed] [Google Scholar]
- Tallon D. F., Corcoran D. J., O'Dwyer E. M., Greally J. F. Circulating lymphocyte subpopulations in pregnancy: a longitudinal study. J Immunol. 1984 Apr;132(4):1784–1787. [PubMed] [Google Scholar]
- Tamul K. R., O'Gorman M. R., Donovan M., Schmitz J. L., Folds J. D. Comparison of a lysed whole blood method to purified cell preparations for lymphocyte immunophenotyping: differences between healthy controls and HIV-positive specimens. J Immunol Methods. 1994 Jan 3;167(1-2):237–243. doi: 10.1016/0022-1759(94)90092-2. [DOI] [PubMed] [Google Scholar]
- Venema H., van den Berg A. P., van Zanten C., van Son W. J., van der Giessen M., The T. H. Natural killer cell responses in renal transplant patients with cytomegalovirus infection. J Med Virol. 1994 Feb;42(2):188–192. doi: 10.1002/jmv.1890420216. [DOI] [PubMed] [Google Scholar]
- Vitale M., Zamai L., Neri L. M., Manzoli L., Facchini A., Papa S. Natural killer function in flow cytometry: identification of human lymphoid subsets able to bind to the NK sensitive target K562. Cytometry. 1991;12(8):717–722. doi: 10.1002/cyto.990120805. [DOI] [PubMed] [Google Scholar]
- Warren H. S., Skipsey L. J. Phenotypic analysis of a resting subpopulation of human peripheral blood NK cells: the FcR gamma III (CD16) molecule and NK cell differentiation. Immunology. 1991 Jan;72(1):150–157. [PMC free article] [PubMed] [Google Scholar]
- Whiteside T. L., Herberman R. B. Role of human natural killer cells in health and disease. Clin Diagn Lab Immunol. 1994 Mar;1(2):125–133. doi: 10.1128/cdli.1.2.125-133.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiltschke C., Tyl E., Speiser P., Steininger A., Zeillinger R., Kury F., Czerwenka K., Kubista E., Preis P., Krainer M. Increased natural killer cell activity correlates with low or negative expression of the HER-2/neu oncogene in patients with breast cancer. Cancer. 1994 Jan 1;73(1):135–139. doi: 10.1002/1097-0142(19940101)73:1<135::aid-cncr2820730123>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
- Zarcone D., Tilden A. B., Cloud G., Friedman H. M., Landay A., Grossi C. E. Flow cytometry evaluation of cell-mediated cytotoxicity. J Immunol Methods. 1986 Nov 20;94(1-2):247–255. doi: 10.1016/0022-1759(86)90239-5. [DOI] [PubMed] [Google Scholar]