Abstract
1. Substitution of chloride by isethionate reduces the short circuit current (SCC) and increases the potential of isolated frog skin. In sodium isethionate Ringer antidiuretic hormone and choline chloride increase the SCC, whereas theophylline is ineffective.
2. Frog skins treated on the outside with copper ions always show an increased potential when bathed in normal Ringer solution. The SCC may be moderately increased or decreased.
3. Theophylline increases skin thickness and cell volume in non-short-circuited skins.
4. The ways in which the theophylline-induced increase in chloride permeability affects sodium transport is discussed, together with the requirements for a permeant anion in both short- and open-circuited skins.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BUTCHER R. W., SUTHERLAND E. W. Adenosine 3',5'-phosphate in biological materials. I. Purification and properties of cyclic 3',5'-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3',5'-phosphate in human urine. J Biol Chem. 1962 Apr;237:1244–1250. [PubMed] [Google Scholar]
- Baba W. I., Smith A. J., Townshend M. M. The effects of vasopressin, theophylline and cyclic 3'-5'-adenosine monophosphate (cyclic AMP) on sodium transport across the frog skin. Q J Exp Physiol Cogn Med Sci. 1967 Oct;52(4):416–421. doi: 10.1113/expphysiol.1967.sp001936. [DOI] [PubMed] [Google Scholar]
- Bacon J. S., Bell D. J. Fructose and glucose in the blood of the foetal sheep. Biochem J. 1948;42(3):397–405. doi: 10.1042/bj0420397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuthbert A. W., Painter E. Independent action of antidiuretic hormone, theophylline and cyclic 3',5'-adenosine monophosphate on cell membrane permeability in frog skin. J Physiol. 1968 Dec;199(3):593–612. doi: 10.1113/jphysiol.1968.sp008670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuthbert A. W., Painter E. The effect of theophylline on chloride permeability and active chloride transport in various epithelia. J Pharm Pharmacol. 1968 Jun;20(6):492–495. doi: 10.1111/j.2042-7158.1968.tb09795.x. [DOI] [PubMed] [Google Scholar]
- FRAZIER H. S. The electrical potential profile of the isolated toad bladder. J Gen Physiol. 1962 Jan;45:515–528. doi: 10.1085/jgp.45.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferreira K. T. Anionic dependence of sodium transport in the frog skin. Biochim Biophys Acta. 1968 Jun 11;150(4):587–598. doi: 10.1016/0005-2736(68)90048-5. [DOI] [PubMed] [Google Scholar]
- Fischbarg J., Zadunaisky J. A., De Fisch F. W. Dependence of sodium and chloride transports on chloride concentration in isolated frog skin. Am J Physiol. 1967 Oct;213(4):963–968. doi: 10.1152/ajplegacy.1967.213.4.963. [DOI] [PubMed] [Google Scholar]
- Janáek K., Morel F., Bourguet J. Etude expérimentale des potentiels électriques et des activités ioniques dans les cellules épithéliales de la vessie de grenouille. J Physiol (Paris) 1968 Jan-Feb;60(1):51–66. [PubMed] [Google Scholar]
- KOEFOED-JOHNSEN V., USSING H. H. The nature of the frog skin potential. Acta Physiol Scand. 1958 Jun 2;42(3-4):298–308. doi: 10.1111/j.1748-1716.1958.tb01563.x. [DOI] [PubMed] [Google Scholar]
- Orloff J., Handler J. The role of adenosine 3',5'-phosphate in the action of antidiuretic hormone. Am J Med. 1967 May;42(5):757–768. doi: 10.1016/0002-9343(67)90093-9. [DOI] [PubMed] [Google Scholar]
- USSING H. H. RELATIONSHIP BETWEEN OSMOTIC REACTIONS AND ACTIVE SODIUM TRANSPORT IN THE FROG SKIN EPITHELIUM. Acta Physiol Scand. 1965 Jan-Feb;63:141–155. doi: 10.1111/j.1748-1716.1965.tb04052.x. [DOI] [PubMed] [Google Scholar]
- USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]