Skip to main content
Clinical and Diagnostic Laboratory Immunology logoLink to Clinical and Diagnostic Laboratory Immunology
. 1996 Jul;3(4):403–410. doi: 10.1128/cdli.3.4.403-410.1996

Serological responses to human papillomavirus type 6 and 16 virus-like particles in patients with cervical neoplastic lesions.

T Sasagawa 1, M Inoue 1, M Lehtinen 1, W Zhang 1, S E Gschmeissner 1, M A Hajibagheri 1, J Finch 1, L Crawford 1
PMCID: PMC170358  PMID: 8807204

Abstract

Serum samples from 36 cervical carcinoma patients, 33 patients with high-grade squamous intraepithelial lesions, and 31 cytologically normal women were tested by enzyme-linked immunosorbent assay (ELISA) using human papilloma virus type 6 (HPV 6) and HPV 16 virus-like particles as antigens. Forty serum specimens from 1-year-old children were used to assign cutoff points. When serum samples from the subjects infected with HPV 16 were tested in an HPV 16 ELISA detecting immunoglobulin A (IgA), IgG, and IgM binding, 61% showed IgA, 44% showed IgG, and 39% showed IgM reactivity. Of HPV 6- or 11- or HPV 18-infected subjects. fewer than 17% showed IgA or IgG responses and 33% showed IgM reactivity. In contrast, 13% showed IgA, 10% showed IgG, and 16% showed IgM reactivity in the HPV DNA-negative controls. The results suggest that the IgA and IgG responses are HPV 16 specific and the IgM response is cross-reactive to different HPV types. On the other hand, the serological responses to HPV 6 did not differ in the patient and control groups. The percentages of patients positive for both IgA and IgG antibodies were significantly higher in the groups with high-grade squamous intraepithelial lesions (12% [4 of 33]; P = 0.04) and cancer (17% [6 of 36]; P = 0.02) than in the healty women (0% [0 of 31]), and the percentages for either IgA or IgG were higher for the cancer group (47% [17 of 36]; P = 0.01) than in the normal group (19% [6 of 31]). Most sera positive for IgA and IgG in the patient groups showed higher titers than those in the normal group. All these results suggest that high IgA and IgG responses are good indicators for estimating HPV 16 infection.

Full Text

The Full Text of this article is available as a PDF (906.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bosch F. X., Manos M. M., Muñoz N., Sherman M., Jansen A. M., Peto J., Schiffman M. H., Moreno V., Kurman R., Shah K. V. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst. 1995 Jun 7;87(11):796–802. doi: 10.1093/jnci/87.11.796. [DOI] [PubMed] [Google Scholar]
  2. Boshart M., Gissmann L., Ikenberg H., Kleinheinz A., Scheurlen W., zur Hausen H. A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J. 1984 May;3(5):1151–1157. doi: 10.1002/j.1460-2075.1984.tb01944.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cason J., Kambo P. K., Best J. M., McCance D. J. Detection of antibodies to a linear epitope on the major coat protein (L1) of human papillomavirus type-16 (HPV-16) in sera from patients with cervical intraepithelial neoplasia and children. Int J Cancer. 1992 Feb 1;50(3):349–355. doi: 10.1002/ijc.2910500304. [DOI] [PubMed] [Google Scholar]
  4. Christensen N. D., Höpfl R., DiAngelo S. L., Cladel N. M., Patrick S. D., Welsh P. A., Budgeon L. R., Reed C. A., Kreider J. W. Assembled baculovirus-expressed human papillomavirus type 11 L1 capsid protein virus-like particles are recognized by neutralizing monoclonal antibodies and induce high titres of neutralizing antibodies. J Gen Virol. 1994 Sep;75(Pt 9):2271–2276. doi: 10.1099/0022-1317-75-9-2271. [DOI] [PubMed] [Google Scholar]
  5. Christensen N. D., Kirnbauer R., Schiller J. T., Ghim S. J., Schlegel R., Jenson A. B., Kreider J. W. Human papillomavirus types 6 and 11 have antigenically distinct strongly immunogenic conformationally dependent neutralizing epitopes. Virology. 1994 Nov 15;205(1):329–335. doi: 10.1006/viro.1994.1649. [DOI] [PubMed] [Google Scholar]
  6. Dillner J., Dillner L., Utter G., Eklund C., Rotola A., Costa S., DiLuca D. Mapping of linear epitopes of human papillomavirus type 16: the L1 and L2 open reading frames. Int J Cancer. 1990 Mar 15;45(3):529–535. doi: 10.1002/ijc.2910450326. [DOI] [PubMed] [Google Scholar]
  7. Dillner J. Mapping of linear epitopes of human papillomavirus type 16: the E1, E2, E4, E5, E6 and E7 open reading frames. Int J Cancer. 1990 Oct 15;46(4):703–711. doi: 10.1002/ijc.2910460426. [DOI] [PubMed] [Google Scholar]
  8. Dvoretzky I., Shober R., Chattopadhyay S. K., Lowy D. R. A quantitative in vitro focus assay for bovine papilloma virus. Virology. 1980 Jun;103(2):369–375. doi: 10.1016/0042-6822(80)90195-6. [DOI] [PubMed] [Google Scholar]
  9. Dürst M., Gissmann L., Ikenberg H., zur Hausen H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3812–3815. doi: 10.1073/pnas.80.12.3812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Galloway D. A. Papillomavirus capsids: a new approach to identify serological markers of HPV infection. J Natl Cancer Inst. 1994 Apr 6;86(7):474–475. doi: 10.1093/jnci/86.7.474. [DOI] [PubMed] [Google Scholar]
  11. Ghim S., Christensen N. D., Kreider J. W., Jenson A. B. Comparison of neutralization of BPV-1 infection of C127 cells and bovine fetal skin xenografts. Int J Cancer. 1991 Sep 9;49(2):285–289. doi: 10.1002/ijc.2910490224. [DOI] [PubMed] [Google Scholar]
  12. Hagensee M. E., Carter J. J., Wipf G. C., Galloway D. A. Immunization of mice with HPV vaccinia virus recombinants generates serum IgG, IgM, and mucosal IgA antibodies. Virology. 1995 Jan 10;206(1):174–182. doi: 10.1016/s0042-6822(95)80032-8. [DOI] [PubMed] [Google Scholar]
  13. Hagensee M. E., Yaegashi N., Galloway D. A. Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J Virol. 1993 Jan;67(1):315–322. doi: 10.1128/jvi.67.1.315-322.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hamsiková E., Novák J., Hofmannová V., Munoz N., Bosch F. X., de Sanjosé S., Shah K., Roth Z., Vonka V. Presence of antibodies to seven human papillomavirus type 16-derived peptides in cervical cancer patients and healthy controls. J Infect Dis. 1994 Dec;170(6):1424–1431. doi: 10.1093/infdis/170.6.1424. [DOI] [PubMed] [Google Scholar]
  15. Hørding U., Iversen A. K., Sebbelov A., Bock J. E., Norrild B. Prevalence of human papillomavirus types 11, 16 and 18 in cervical swabs. A study of 1362 pregnant women. Eur J Obstet Gynecol Reprod Biol. 1990 May-Jun;35(2-3):191–198. doi: 10.1016/0028-2243(90)90161-s. [DOI] [PubMed] [Google Scholar]
  16. Jochmus-Kudielka I., Schneider A., Braun R., Kimmig R., Koldovsky U., Schneweis K. E., Seedorf K., Gissmann L. Antibodies against the human papillomavirus type 16 early proteins in human sera: correlation of anti-E7 reactivity with cervical cancer. J Natl Cancer Inst. 1989 Nov 15;81(22):1698–1704. doi: 10.1093/jnci/81.22.1698. [DOI] [PubMed] [Google Scholar]
  17. Kirnbauer R., Taub J., Greenstone H., Roden R., Dürst M., Gissmann L., Lowy D. R., Schiller J. T. Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles. J Virol. 1993 Dec;67(12):6929–6936. doi: 10.1128/jvi.67.12.6929-6936.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Köchel H. G., Sievert K., Monazahian M., Mittelstädt-Deterding A., Teichmann A., Thomssen R. Antibodies to human papillomavirus type-16 in human sera as revealed by the use of prokaryotically expressed viral gene products. Virology. 1991 Jun;182(2):644–654. doi: 10.1016/0042-6822(91)90605-b. [DOI] [PubMed] [Google Scholar]
  19. Le Cann P., Touze A., Enogat N., Leboulleux D., Mougin C., Legrand M. C., Calvet C., Afoutou J. M., Coursaget P. Detection of antibodies against human papillomavirus (HPV) type 16 virions by enzyme-linked immunosorbent assay using recombinant HPV 16 L1 capsids produced by recombinant baculovirus. J Clin Microbiol. 1995 May;33(5):1380–1382. doi: 10.1128/jcm.33.5.1380-1382.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lehtinen M., Niemelä J., Dillner J., Parkkonen P., Nummi T., Liski E., Nieminen P., Reunala T., Paavonen J. Evaluation of serum antibody response to a newly identified B-cell epitope in the minor nucleocapsid protein L2 of human papillomavirus type 16. Clin Diagn Virol. 1993 Aug;1(3):153–165. doi: 10.1016/0928-0197(93)90010-3. [DOI] [PubMed] [Google Scholar]
  21. Lorincz A. T., Reid R., Jenson A. B., Greenberg M. D., Lancaster W., Kurman R. J. Human papillomavirus infection of the cervix: relative risk associations of 15 common anogenital types. Obstet Gynecol. 1992 Mar;79(3):328–337. doi: 10.1097/00006250-199203000-00002. [DOI] [PubMed] [Google Scholar]
  22. Lörincz A. T., Quinn A. P., Goldsborough M. D., Schmidt B. J., Temple G. F. Cloning and partial DNA sequencing of two new human papillomavirus types associated with condylomas and low-grade cervical neoplasia. J Virol. 1989 Jun;63(6):2829–2834. doi: 10.1128/jvi.63.6.2829-2834.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McLean C. S., Churcher M. J., Meinke J., Smith G. L., Higgins G., Stanley M., Minson A. C. Production and characterisation of a monoclonal antibody to human papillomavirus type 16 using recombinant vaccinia virus. J Clin Pathol. 1990 Jun;43(6):488–492. doi: 10.1136/jcp.43.6.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Müller M., Viscidi R. P., Sun Y., Guerrero E., Hill P. M., Shah F., Bosch F. X., Muñoz N., Gissmann L., Shah K. V. Antibodies to HPV-16 E6 and E7 proteins as markers for HPV-16-associated invasive cervical cancer. Virology. 1992 Apr;187(2):508–514. doi: 10.1016/0042-6822(92)90453-v. [DOI] [PubMed] [Google Scholar]
  25. Nonnenmacher B., Hubbert N. L., Kirnbauer R., Shah K. V., Muñoz N., Bosch F. X., de Sanjosé S., Viscidi R., Lowy D. R., Schiller J. T. Serologic response to human papillomavirus type 16 (HPV-16) virus-like particles in HPV-16 DNA-positive invasive cervical cancer and cervical intraepithelial neoplasia grade III patients and controls from Colombia and Spain. J Infect Dis. 1995 Jul;172(1):19–24. doi: 10.1093/infdis/172.1.19. [DOI] [PubMed] [Google Scholar]
  26. Petersen C. S., Lindeberg H., Thomsen H. K. Human papillomavirus types in cervical biopsy specimens from Pap-smear-negative women with external genital warts. Acta Obstet Gynecol Scand. 1991;70(1):69–71. doi: 10.3109/00016349109006181. [DOI] [PubMed] [Google Scholar]
  27. Pushko P., Sasagawa T., Cuzick J., Crawford L. Sequence variation in the capsid protein genes of human papillomavirus type 16. J Gen Virol. 1994 Apr;75(Pt 4):911–916. doi: 10.1099/0022-1317-75-4-911. [DOI] [PubMed] [Google Scholar]
  28. Rose R. C., Bonnez W., Da Rin C., McCance D. J., Reichman R. C. Serological differentiation of human papillomavirus types 11, 16 and 18 using recombinant virus-like particles. J Gen Virol. 1994 Sep;75(Pt 9):2445–2449. doi: 10.1099/0022-1317-75-9-2445. [DOI] [PubMed] [Google Scholar]
  29. Rose R. C., Bonnez W., Reichman R. C., Garcea R. L. Expression of human papillomavirus type 11 L1 protein in insect cells: in vivo and in vitro assembly of viruslike particles. J Virol. 1993 Apr;67(4):1936–1944. doi: 10.1128/jvi.67.4.1936-1944.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Saito J., Yutsudo M., Inoue M., Ueda G., Tanizawa O., Hakura A. New human papillomavirus sequences in female genital tumors from Japanese patients. Jpn J Cancer Res. 1987 Oct;78(10):1081–1087. [PubMed] [Google Scholar]
  31. Sasagawa T., Inoue M., Inoue H., Yutsudo M., Tanizawa O., Hakura A. Induction of uterine cervical neoplasias in mice by human papillomavirus type 16 E6/E7 genes. Cancer Res. 1992 Aug 15;52(16):4420–4426. [PubMed] [Google Scholar]
  32. Sasagawa T., Inoue M., Tanizawa O., Yutsudo M., Hakura A. Identification of antibodies against human papillomavirus type 16 E6 and E7 proteins in sera of patients with cervical neoplasias. Jpn J Cancer Res. 1992 Jul;83(7):705–713. doi: 10.1111/j.1349-7006.1992.tb01970.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sasagawa T., Kondoh G., Inoue M., Yutsudo M., Hakura A. Cervical/vaginal dysplasias of transgenic mice harbouring human papillomavirus type 16 E6-E7 genes. J Gen Virol. 1994 Nov;75(Pt 11):3057–3065. doi: 10.1099/0022-1317-75-11-3057. [DOI] [PubMed] [Google Scholar]
  34. Sasagawa T., Pushko P., Steers G., Gschmeissner S. E., Hajibagheri M. A., Finch J., Crawford L., Tommasino M. Synthesis and assembly of virus-like particles of human papillomaviruses type 6 and type 16 in fission yeast Schizosaccharomyces pombe. Virology. 1995 Jan 10;206(1):126–135. doi: 10.1016/s0042-6822(95)80027-1. [DOI] [PubMed] [Google Scholar]
  35. The 1988 Bethesda System for reporting cervical/vaginal cytological diagnoses. National Cancer Institute Workshop. JAMA. 1989 Aug 18;262(7):931–934. [PubMed] [Google Scholar]
  36. Yasumoto S., Burkhardt A. L., Doniger J., DiPaolo J. A. Human papillomavirus type 16 DNA-induced malignant transformation of NIH 3T3 cells. J Virol. 1986 Feb;57(2):572–577. doi: 10.1128/jvi.57.2.572-577.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yutsudo M., Okamoto Y., Hakura A. Functional dissociation of transforming genes of human papillomavirus type 16. Virology. 1988 Oct;166(2):594–597. doi: 10.1016/0042-6822(88)90532-6. [DOI] [PubMed] [Google Scholar]
  38. de Villiers E. M. Human pathogenic papillomavirus types: an update. Curr Top Microbiol Immunol. 1994;186:1–12. doi: 10.1007/978-3-642-78487-3_1. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Diagnostic Laboratory Immunology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES