Skip to main content
Clinical and Diagnostic Laboratory Immunology logoLink to Clinical and Diagnostic Laboratory Immunology
. 1996 Jul;3(4):411–416. doi: 10.1128/cdli.3.4.411-416.1996

Detection of altered T helper 1 and T helper 2 cytokine production by peripheral blood mononuclear cells in patients with multiple sclerosis utilizing intracellular cytokine detection by flow cytometry and surface marker analysis.

B Crucian 1, P Dunne 1, H Friedman 1, R Ragsdale 1, S Pross 1, R Widen 1
PMCID: PMC170359  PMID: 8807205

Abstract

Production of T helper 1 and T helper 2 cytokines was investigated in peripheral blood mononuclear cells (PBMCs) from multiple sclerosis (MS) patients by a newly described technique, detection of intracellular cytokines by flow cytometry in conjunction with immunophenotype analysis. T-cell gamma interferon (IFN-gamma) production and interleukin 10 (IL-10) production were examined after PBMC activation with T-cell mitogens at 5 and 24 h, and monocyte spontaneous production of IL-10 and production after PBMC activation with lipopolysaccharide (LPS) for 24 h were also examined. The data indicate that MS patients have decreased percentages of T cells capable of secreting IFN-gama compared with healthy controls, and this change is detectable at 5 and 24 h. the patients displaying decreased T-cell production of IFN-gamma were essentially confined to a group being treated with the newly approved drug Betaseron (berlex Labs, Cedar Knolls, N.J.), a recombinant form of IFN-beta (rIFN-beta 1b). By gating of the entire lymphocyte population, analysis of IFN-gama production in T cells (CD3+ versus that in non-T cells (CD3+) was possible. The percentage of IFN-gamma-producing lymphocytes that was made up of T cells was essentially unchanged between the Betaseron-treated patients, non-Betaseron-treated patients, and controls, indicating that the suppression of IFN-gamma production displayed by betaseron-treated MS patients was a nonspecific suppression of all IFN-gamma-producing lymphocytes as opposed to a suppression of T-cell production only. The data seem to indicate that treatment of MS with Betaseron corresponds to an inhibition of the lymphocyte's ability to produce IFN-gamma. No changes were detected in T-cell production of IL-10 at either time point. We also observed that MS patients in general appear to have small percentages of peripheral blood monocytes spontaneously producing slight but detectable levels of IL-10. No difference was seen regarding monocyte production of IL-10 after PBMC activation with LPS between MS patients and controls. Both populations responded with high percentages of monocytes producing IL-10. The data seem to indicate that treatment of MS with Betaseron, known to decrease the exacerbation rate of relapsing-remitting MS, corresponds to a suppression of peripheral blood lymphocyte production of IFN-gamma. Monocyte production of IL-10 may also play a role in regulating the disease process.

Full Text

The Full Text of this article is available as a PDF (295.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando D. G., Clayton J., Kono D., Urban J. L., Sercarz E. E. Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol. 1989 Nov;124(1):132–143. doi: 10.1016/0008-8749(89)90117-2. [DOI] [PubMed] [Google Scholar]
  2. Assenmacher M., Schmitz J., Radbruch A. Flow cytometric determination of cytokines in activated murine T helper lymphocytes: expression of interleukin-10 in interferon-gamma and in interleukin-4-expressing cells. Eur J Immunol. 1994 May;24(5):1097–1101. doi: 10.1002/eji.1830240513. [DOI] [PubMed] [Google Scholar]
  3. Chen Y., Kuchroo V. K., Inobe J., Hafler D. A., Weiner H. L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science. 1994 Aug 26;265(5176):1237–1240. doi: 10.1126/science.7520605. [DOI] [PubMed] [Google Scholar]
  4. Correale J., Gilmore W., McMillan M., Li S., McCarthy K., Le T., Weiner L. P. Patterns of cytokine secretion by autoreactive proteolipid protein-specific T cell clones during the course of multiple sclerosis. J Immunol. 1995 Mar 15;154(6):2959–2968. [PubMed] [Google Scholar]
  5. Crucian B., Dunne P., Friedman H., Ragsdale R., Pross S., Widen R. Alterations in levels of CD28-/CD8+ suppressor cell precursor and CD45RO+/CD4+ memory T lymphocytes in the peripheral blood of multiple sclerosis patients. Clin Diagn Lab Immunol. 1995 Mar;2(2):249–252. doi: 10.1128/cdli.2.2.249-252.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crucian B., Dunne P., Friedman H., Ragsdale R., Pross S., Widen R. Alterations in peripheral blood mononuclear cell cytokine production in response to phytohemagglutinin in multiple sclerosis patients. Clin Diagn Lab Immunol. 1995 Nov;2(6):766–769. doi: 10.1128/cdli.2.6.766-769.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dore-Duffy P., Donovan C., Todd R. F., 3rd Expression of monocyte activation antigen Mo3 on the surface of peripheral blood monocytes from patients with multiple sclerosis. Neurology. 1992 Aug;42(8):1609–1614. doi: 10.1212/wnl.42.8.1609. [DOI] [PubMed] [Google Scholar]
  8. Elson L. H., Nutman T. B., Metcalfe D. D., Prussin C. Flow cytometric analysis for cytokine production identifies T helper 1, T helper 2, and T helper 0 cells within the human CD4+CD27- lymphocyte subpopulation. J Immunol. 1995 May 1;154(9):4294–4301. [PubMed] [Google Scholar]
  9. Gould K. E., Swanborg R. H. T and B cell responses to myelin basic protein and encephalitogenic epitopes. J Neuroimmunol. 1993 Jul;46(1-2):193–198. doi: 10.1016/0165-5728(93)90249-x. [DOI] [PubMed] [Google Scholar]
  10. Hafler D. A., Weiner H. L. MS: a CNS and systemic autoimmune disease. Immunol Today. 1989 Mar;10(3):104–107. doi: 10.1016/0167-5699(89)90236-3. [DOI] [PubMed] [Google Scholar]
  11. Imamura K., Suzumura A., Hayashi F., Marunouchi T. Cytokine production by peripheral blood monocytes/macrophages in multiple sclerosis patients. Acta Neurol Scand. 1993 Apr;87(4):281–285. doi: 10.1111/j.1600-0404.1993.tb05508.x. [DOI] [PubMed] [Google Scholar]
  12. Jacobs L., Goodkin D. E., Rudick R. A., Herndon R. Advances in specific therapy for multiple sclerosis. Curr Opin Neurol. 1994 Jun;7(3):250–254. doi: 10.1097/00019052-199406000-00012. [DOI] [PubMed] [Google Scholar]
  13. Jung T., Schauer U., Heusser C., Neumann C., Rieger C. Detection of intracellular cytokines by flow cytometry. J Immunol Methods. 1993 Feb 26;159(1-2):197–207. doi: 10.1016/0022-1759(93)90158-4. [DOI] [PubMed] [Google Scholar]
  14. Kastrukoff L. F., Oger J. J., Tourtellotte W. W., Sacks S. L., Berkowitz J., Paty D. W. Systemic lymphoblastoid interferon therapy in chronic progressive multiple sclerosis. II. Immunologic evaluation. Neurology. 1991 Dec;41(12):1936–1941. doi: 10.1212/wnl.41.12.1936. [DOI] [PubMed] [Google Scholar]
  15. Kennedy M. K., Torrance D. S., Picha K. S., Mohler K. M. Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL-10 mRNA expression correlates with recovery. J Immunol. 1992 Oct 1;149(7):2496–2505. [PubMed] [Google Scholar]
  16. Khoury S. J., Hancock W. W., Weiner H. L. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain. J Exp Med. 1992 Nov 1;176(5):1355–1364. doi: 10.1084/jem.176.5.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kreft B., Singer G. G., Diaz-Gallo C., Kelley V. R. Detection of intracellular interleukin-10 by flow cytometry. J Immunol Methods. 1992 Nov 25;156(1):125–128. doi: 10.1016/0022-1759(92)90018-o. [DOI] [PubMed] [Google Scholar]
  18. Kurtzke J. F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983 Nov;33(11):1444–1452. doi: 10.1212/wnl.33.11.1444. [DOI] [PubMed] [Google Scholar]
  19. Liblau R. S., Singer S. M., McDevitt H. O. Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today. 1995 Jan;16(1):34–38. doi: 10.1016/0167-5699(95)80068-9. [DOI] [PubMed] [Google Scholar]
  20. Maimone D., Reder A. T., Gregory S. T cell lymphokine-induced secretion of cytokines by monocytes from patients with multiple sclerosis. Cell Immunol. 1993 Jan;146(1):96–106. doi: 10.1006/cimm.1993.1009. [DOI] [PubMed] [Google Scholar]
  21. Miller A., al-Sabbagh A., Santos L. M., Das M. P., Weiner H. L. Epitopes of myelin basic protein that trigger TGF-beta release after oral tolerization are distinct from encephalitogenic epitopes and mediate epitope-driven bystander suppression. J Immunol. 1993 Dec 15;151(12):7307–7315. [PubMed] [Google Scholar]
  22. Navikas V., Link J., Palasik W., Söderström M., Fredrikson S., Olsson T., Link H. Increased mRNA expression of IL-10 in mononuclear cells in multiple sclerosis and optic neuritis. Scand J Immunol. 1995 Feb;41(2):171–178. doi: 10.1111/j.1365-3083.1995.tb03550.x. [DOI] [PubMed] [Google Scholar]
  23. Noronha A., Toscas A., Jensen M. A. Contrasting effects of alpha, beta, and gamma interferons on nonspecific suppressor function in multiple sclerosis. Ann Neurol. 1992 Jan;31(1):103–106. doi: 10.1002/ana.410310119. [DOI] [PubMed] [Google Scholar]
  24. Noronha A., Toscas A., Jensen M. A. Interferon beta decreases T cell activation and interferon gamma production in multiple sclerosis. J Neuroimmunol. 1993 Jul;46(1-2):145–153. doi: 10.1016/0165-5728(93)90244-s. [DOI] [PubMed] [Google Scholar]
  25. Panitch H. S., Hirsch R. L., Haley A. S., Johnson K. P. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet. 1987 Apr 18;1(8538):893–895. doi: 10.1016/s0140-6736(87)92863-7. [DOI] [PubMed] [Google Scholar]
  26. Panitch H. S. Interferons in multiple sclerosis. A review of the evidence. Drugs. 1992 Dec;44(6):946–962. doi: 10.2165/00003495-199244060-00004. [DOI] [PubMed] [Google Scholar]
  27. Paty D. W., Li D. K. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Neurology. 1993 Apr;43(4):662–667. doi: 10.1212/wnl.43.4.662. [DOI] [PubMed] [Google Scholar]
  28. Porrini A. M., Gambi D., Reder A. T. Interferon effects on interleukin-10 secretion. Mononuclear cell response to interleukin-10 is normal in multiple sclerosis patients. J Neuroimmunol. 1995 Aug;61(1):27–34. doi: 10.1016/0165-5728(95)00070-i. [DOI] [PubMed] [Google Scholar]
  29. Powrie F., Coffman R. L. Cytokine regulation of T-cell function: potential for therapeutic intervention. Immunol Today. 1993 Jun;14(6):270–274. doi: 10.1016/0167-5699(93)90044-L. [DOI] [PubMed] [Google Scholar]
  30. Rodeck U., Kuwert E., Scharafinski H. W., Lehmann H. J. T lymphocyte populations in multiple sclerosis. Eur Arch Psychiatry Neurol Sci. 1985;235(2):119–121. doi: 10.1007/BF00633483. [DOI] [PubMed] [Google Scholar]
  31. SCHUMACHER G. A., BEEBE G., KIBLER R. F., KURLAND L. T., KURTZKE J. F., MCDOWELL F., NAGLER B., SIBLEY W. A., TOURTELLOTTE W. W., WILLMON T. L. PROBLEMS OF EXPERIMENTAL TRIALS OF THERAPY IN MULTIPLE SCLEROSIS: REPORT BY THE PANEL ON THE EVALUATION OF EXPERIMENTAL TRIALS OF THERAPY IN MULTIPLE SCLEROSIS. Ann N Y Acad Sci. 1965 Mar 31;122:552–568. doi: 10.1111/j.1749-6632.1965.tb20235.x. [DOI] [PubMed] [Google Scholar]
  32. Salvetti M., Ristori G., D'Amato M., Buttinelli C., Falcone M., Fieschi C., Wekerle H., Pozzilli C. Predominant and stable T cell responses to regions of myelin basic protein can be detected in individual patients with multiple sclerosis. Eur J Immunol. 1993 Jun;23(6):1232–1239. doi: 10.1002/eji.1830230606. [DOI] [PubMed] [Google Scholar]
  33. Sander B., Andersson J., Andersson U. Assessment of cytokines by immunofluorescence and the paraformaldehyde-saponin procedure. Immunol Rev. 1991 Feb;119:65–93. doi: 10.1111/j.1600-065x.1991.tb00578.x. [DOI] [PubMed] [Google Scholar]
  34. Sedgwick J. D., MacPhee I. A., Puklavec M. Isolation of encephalitogenic CD4+ T cell clones in the rat. Cloning methodology and interferon-gamma secretion. J Immunol Methods. 1989 Jul 26;121(2):185–196. doi: 10.1016/0022-1759(89)90159-2. [DOI] [PubMed] [Google Scholar]
  35. Sharief M. K., Hentges R. Association between tumor necrosis factor-alpha and disease progression in patients with multiple sclerosis. N Engl J Med. 1991 Aug 15;325(7):467–472. doi: 10.1056/NEJM199108153250704. [DOI] [PubMed] [Google Scholar]
  36. Tartakoff A. M. Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell. 1983 Apr;32(4):1026–1028. doi: 10.1016/0092-8674(83)90286-6. [DOI] [PubMed] [Google Scholar]
  37. Trotter J. L., Clifford D. B., McInnis J. E., Griffeth R. C., Bruns K. A., Perlmutter M. S., Anderson C. B., Collins K. G., Banks G., Hicks B. C. Correlation of immunological studies and disease progression in chronic progressive multiple sclerosis. Ann Neurol. 1989 Feb;25(2):172–178. doi: 10.1002/ana.410250211. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Diagnostic Laboratory Immunology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES