Skip to main content
Clinical and Diagnostic Laboratory Immunology logoLink to Clinical and Diagnostic Laboratory Immunology
. 1996 Jul;3(4):423–428. doi: 10.1128/cdli.3.4.423-428.1996

High-dose catecholamine treatment decreases polymorphonuclear leukocyte phagocytic capacity and reactive oxygen production.

C Wenisch 1, B Parschalk 1, A Weiss 1, K Zedwitz-Liebenstein 1, B Hahsler 1, H Wenisch 1, A Georgopoulos 1, W Graninger 1
PMCID: PMC170361  PMID: 8807207

Abstract

Flow cytometry was used to study phagocytic function (uptake of fluorescein isothiocyanate-labeled bacteria) and release of reactive oxygen products (dihydrorhodamine 123 converted to rhodamine 123) following phagocytosis by neutrophil granulocytes of heparinized whole blood treated with adrenaline, noradrenaline, dopamine, dobutamine, or orciprenaline. Reduced neutrophil phagocytosis and reactive oxygen production were seen at 12 micrograms of adrenaline per liter (72% each compared with control values); at 120 micrograms of noradrenaline (72% each), dobutamine (83 and 80%, respectively), and orciprenaline (81 and 80%, respectively) per liter; and at 100 micrograms of dopamine per liter (66 and 70%) (P < 0.05 for all). At these dosages, neutrophil chemotaxis was reduced to < 50% of control values for all catecholamines. Treatment with catecholamines at lower dosages had no significant effect on phagocytosis or generation of reactive oxygen products or chemotaxis. The phagocytic capacity of granulocytes was related to the generation of reactive oxygen products (r = 0.789; P < 0.05). The results demonstrate that catecholamines have a suppressive effect on the response of phagocytic cells to bacterial pathogens at high therapeutic levels in blood.

Full Text

The Full Text of this article is available as a PDF (288.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brandt E., Petersen F., Flad H. D. Recombinant tumor necrosis factor-alpha potentiates neutrophil degranulation in response to host defense cytokines neutrophil-activating peptide 2 and IL-8 by modulating intracellular cyclic AMP levels. J Immunol. 1992 Aug 15;149(4):1356–1364. [PubMed] [Google Scholar]
  2. Coffey R. G. Effects of cyclic nucleotides on granulocytes. Immunol Ser. 1992;57:301–338. [PubMed] [Google Scholar]
  3. Dorman T., Breslow M. J. Altered immune function after trauma and hemorrhage: what does it all mean? Crit Care Med. 1994 Jul;22(7):1069–1070. doi: 10.1097/00003246-199407000-00001. [DOI] [PubMed] [Google Scholar]
  4. Eggleton P., Gargan R., Fisher D. Rapid method for the isolation of neutrophils in high yield without the use of dextran or density gradient polymers. J Immunol Methods. 1989 Jul 6;121(1):105–113. doi: 10.1016/0022-1759(89)90425-0. [DOI] [PubMed] [Google Scholar]
  5. Estensen R. D., Hill H. R., Quie P. G., Gogan N., Goldberg N. D. Cyclic GMP and cell movement. Nature. 1973 Oct 26;245(5426):458–460. doi: 10.1038/245458a0. [DOI] [PubMed] [Google Scholar]
  6. Gallois Y., Vol S., Cacès E., Balkau B. Distribution of fasting serum insulin measured by enzyme immunoassay in an unselected population of 4,032 individuals. Reference values according to age and sex. D.E.S.I.R. Study Group. Données Epidémiologiques sur le Syndrome d'Insulino-Résistance. Diabetes Metab. 1996 Dec;22(6):427–431. [PubMed] [Google Scholar]
  7. Gnarpe H., Belsheim J. Direct and indirect effects of antibiotics on granulocyte activity. J Antimicrob Chemother. 1981 Nov;8 (Suppl 100):71–78. doi: 10.1093/jac/8.suppl_c.71. [DOI] [PubMed] [Google Scholar]
  8. Haskill S., Johnson C., Eierman D., Becker S., Warren K. Adherence induces selective mRNA expression of monocyte mediators and proto-oncogenes. J Immunol. 1988 Mar 1;140(5):1690–1694. [PubMed] [Google Scholar]
  9. Hill H. R., Estensen R. D., Quie P. G., Hogan N. A., Goldberg N. D. Modulation of human neutrophil chemotactic responses by cyclic 3',5'-guanosine monophosphate and cyclic 3',5'-adenosine monophosphate. Metabolism. 1975 Mar;24(3):447–456. doi: 10.1016/0026-0495(75)90124-9. [DOI] [PubMed] [Google Scholar]
  10. Revhaug A., Michie H. R., Manson J. M., Watters J. M., Dinarello C. A., Wolff S. M., Wilmore D. W. Inhibition of cyclo-oxygenase attenuates the metabolic response to endotoxin in humans. Arch Surg. 1988 Feb;123(2):162–170. doi: 10.1001/archsurg.1988.01400260042004. [DOI] [PubMed] [Google Scholar]
  11. Schmand J. F., Ayala A., Chaudry I. H. Effects of trauma, duration of hypotension, and resuscitation regimen on cellular immunity after hemorrhagic shock. Crit Care Med. 1994 Jul;22(7):1076–1083. doi: 10.1097/00003246-199407000-00005. [DOI] [PubMed] [Google Scholar]
  12. Severn A., Rapson N. T., Hunter C. A., Liew F. Y. Regulation of tumor necrosis factor production by adrenaline and beta-adrenergic agonists. J Immunol. 1992 Jun 1;148(11):3441–3445. [PubMed] [Google Scholar]
  13. Simms H. H., D'Amico R. Polymorphonuclear leukocyte dysregulation during the systemic inflammatory response syndrome. Blood. 1994 Mar 1;83(5):1398–1407. [PubMed] [Google Scholar]
  14. Spengler R. N., Allen R. M., Remick D. G., Strieter R. M., Kunkel S. L. Stimulation of alpha-adrenergic receptor augments the production of macrophage-derived tumor necrosis factor. J Immunol. 1990 Sep 1;145(5):1430–1434. [PubMed] [Google Scholar]
  15. Vespasiano M. C., Lewandoski J. R., Zimmerman J. J. Longitudinal analysis of neutrophil superoxide anion generation in patients with septic shock. Crit Care Med. 1993 May;21(5):666–672. doi: 10.1097/00003246-199305000-00008. [DOI] [PubMed] [Google Scholar]
  16. Weiss S. J. Tissue destruction by neutrophils. N Engl J Med. 1989 Feb 9;320(6):365–376. doi: 10.1056/NEJM198902093200606. [DOI] [PubMed] [Google Scholar]
  17. Wenisch C., Graninger W. Are soluble factors relevant for polymorphonuclear leukocyte dysregulation in septicemia? Clin Diagn Lab Immunol. 1995 Mar;2(2):241–245. doi: 10.1128/cdli.2.2.241-245.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wenisch C., Parschalk B., Hasenhündl M., Wiesinger E., Graninger W. Effect of cefodizime and ceftriaxone on phagocytic function in patients with severe infections. Antimicrob Agents Chemother. 1995 Mar;39(3):672–676. doi: 10.1128/AAC.39.3.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wilkinson P. C., Borel J. F., Stecher-Levin V. J., Sorkin E. Macrophage and neutrophil specific chemotactic factors in serum. Nature. 1969 Apr 19;222(5190):244–247. doi: 10.1038/222244a0. [DOI] [PubMed] [Google Scholar]
  20. van der Poll T., Jansen J., Endert E., Sauerwein H. P., van Deventer S. J. Noradrenaline inhibits lipopolysaccharide-induced tumor necrosis factor and interleukin 6 production in human whole blood. Infect Immun. 1994 May;62(5):2046–2050. doi: 10.1128/iai.62.5.2046-2050.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Clinical and Diagnostic Laboratory Immunology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES