Skip to main content
Clinical and Diagnostic Laboratory Immunology logoLink to Clinical and Diagnostic Laboratory Immunology
. 1997 May;4(3):275–278. doi: 10.1128/cdli.4.3.275-278.1997

Heterogeneity of cell-associated CP5 expression on Staphylococcus aureus strains demonstrated by flow cytometry.

B Poutrel 1, P Rainard 1, P Sarradin 1
PMCID: PMC170518  PMID: 9144363

Abstract

It was reported previously that two capsular polysaccharides, types 5 and 8 (CP5 and CP8), account for 70 to 80% of Staphylococcus aureus strains isolated from human and animal sources. The capsular material has been shown to play a part in virulence and in resistance to phagocytosis. With a view to investigating the role that CP plays in pathogenicity or protection, relative measurement of cell-associated CP is desirable. Flow cytometry, which permits the analysis of individual bacteria, was used to that end. Thirty isolates expressing CP5, of human (n = 7) and animal (cow, n = 11; goat, n = 3; swine, n = 3; hen, n = 3; and rabbit, n = 3) origin, were cultivated on either brain heart infusion agar (BHI) or modified medium 110 (mod 110) agar. Staphylococci were incubated with a mouse anti-CP5 monoclonal antibody (an immunoglobulin M, which does not react with staphylococcal protein A) and then stained with a fluorescein-labeled anti-murine antibody. The bacteria were washed, sonicated, and analyzed by flow cytometry. Except for three isolates, the expression of cell-bound CP5 was higher when bacteria were cultivated on mod 110 than when they were cultivated on BHI. We found a wide intraisolate phenotypic heterogeneity in surface-exposed CP5 in many strains, which appeared as mixtures of stained and unstained bacteria. Four main patterns could be distinguished on the basis of the distribution of the fluorescence of individual bacteria within the strain population as a function of growth medium. Great variations in both percentages of stained bacteria and fluorescence intensity were recorded among strains regardless of their origin. Flow cytometry analysis provided information on both the relative amounts and the distribution patterns of the surface expression of CP. This information is potentially useful for the evaluation of the part played by the capsule in the interaction of bacteria with host cells or for the study of the activities of antibodies to this target antigen, such as opsonization or prevention of adherence.

Full Text

The Full Text of this article is available as a PDF (229.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apicella M. A., Shero M., Jarvis G. A., Griffiss J. M., Mandrell R. E., Schneider H. Phenotypic variation in epitope expression of the Neisseria gonorrhoeae lipooligosaccharide. Infect Immun. 1987 Aug;55(8):1755–1761. doi: 10.1128/iai.55.8.1755-1761.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arbeit R. D., Dunn R. M. Expression of capsular polysaccharide during experimental focal infection with Staphylococcus aureus. J Infect Dis. 1987 Dec;156(6):947–952. doi: 10.1093/infdis/156.6.947. [DOI] [PubMed] [Google Scholar]
  3. Arbeit R. D., Karakawa W. W., Vann W. F., Robbins J. B. Predominance of two newly described capsular polysaccharide types among clinical isolates of Staphylococcus aureus. Diagn Microbiol Infect Dis. 1984 Apr;2(2):85–91. doi: 10.1016/0732-8893(84)90002-6. [DOI] [PubMed] [Google Scholar]
  4. Boutonnier A., Nato F., Bouvet A., Lebrun L., Audurier A., Mazie J. C., Fournier J. M. Direct testing of blood culture for detection of the serotype 5 and 8 capsular polysaccharides of Staphylococcus aureus. J Clin Microbiol. 1989 May;27(5):989–993. doi: 10.1128/jcm.27.5.989-993.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bowden R. A., Cloeckaert A., Zygmunt M. S., Bernard S., Dubray G. Surface exposure of outer membrane protein and lipopolysaccharide epitopes in Brucella species studied by enzyme-linked immunosorbent assay and flow cytometry. Infect Immun. 1995 Oct;63(10):3945–3952. doi: 10.1128/iai.63.10.3945-3952.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Evans M. E., Pollack M., Hardegen N. J., Koles N. L., Guelde G., Chia J. K. Fluorescence-activated cell sorter analysis of binding by lipopolysaccharide-specific monoclonal antibodies to gram-negative bacteria. J Infect Dis. 1990 Jul;162(1):148–155. doi: 10.1093/infdis/162.1.148. [DOI] [PubMed] [Google Scholar]
  7. Fattom A. I., Sarwar J., Ortiz A., Naso R. A Staphylococcus aureus capsular polysaccharide (CP) vaccine and CP-specific antibodies protect mice against bacterial challenge. Infect Immun. 1996 May;64(5):1659–1665. doi: 10.1128/iai.64.5.1659-1665.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gilbert F. B., Poutrel B., Sutra L. Immunogenicity in cows of Staphylococcus aureus type 5 capsular polysaccharide-ovalbumin conjugate. Vaccine. 1994 Mar;12(4):369–374. doi: 10.1016/0264-410x(94)90103-1. [DOI] [PubMed] [Google Scholar]
  9. Granlund-Edstedt M., Sellin M., Holm A., Hakansson S. Adherence and surface properties of buoyant density subpopulations of group B streptococci, type III. APMIS. 1993 Feb;101(2):141–148. doi: 10.1111/j.1699-0463.1993.tb00093.x. [DOI] [PubMed] [Google Scholar]
  10. Håkansson S., Granlund-Edstedt M., Sellin M., Holm S. E. Demonstration and characterization of buoyant-density subpopulations of group B Streptococcus type III. J Infect Dis. 1990 Apr;161(4):741–746. doi: 10.1093/infdis/161.4.741. [DOI] [PubMed] [Google Scholar]
  11. Karakawa W. W., Fournier J. M., Vann W. F., Arbeit R., Schneerson R. S., Robbins J. B. Method for the serological typing of the capsular polysaccharides of Staphylococcus aureus. J Clin Microbiol. 1985 Sep;22(3):445–447. doi: 10.1128/jcm.22.3.445-447.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Karakawa W. W., Sutton A., Schneerson R., Karpas A., Vann W. F. Capsular antibodies induce type-specific phagocytosis of capsulated Staphylococcus aureus by human polymorphonuclear leukocytes. Infect Immun. 1988 May;56(5):1090–1095. doi: 10.1128/iai.56.5.1090-1095.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kearney J. F., Radbruch A., Liesegang B., Rajewsky K. A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybrid cell lines. J Immunol. 1979 Oct;123(4):1548–1550. [PubMed] [Google Scholar]
  14. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  15. Lee J. C., Takeda S., Livolsi P. J., Paoletti L. C. Effects of in vitro and in vivo growth conditions on expression of type 8 capsular polysaccharide by Staphylococcus aureus. Infect Immun. 1993 May;61(5):1853–1858. doi: 10.1128/iai.61.5.1853-1858.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mamo W., Lindahl M., Jonsson P. Enhanced virulence of Staphylococcus aureus from bovine mastitis induced by growth in milk whey. Vet Microbiol. 1991 May;27(3-4):371–384. doi: 10.1016/0378-1135(91)90161-8. [DOI] [PubMed] [Google Scholar]
  17. Poutrel B., Boutonnier A., Sutra L., Fournier J. M. Prevalence of capsular polysaccharide types 5 and 8 among Staphylococcus aureus isolates from cow, goat, and ewe milk. J Clin Microbiol. 1988 Jan;26(1):38–40. doi: 10.1128/jcm.26.1.38-40.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Poutrel B., Gilbert F. B., Lebrun M. Effects of culture conditions on production of type 5 capsular polysaccharide by human and bovine Staphylococcus aureus strains. Clin Diagn Lab Immunol. 1995 Mar;2(2):166–171. doi: 10.1128/cdli.2.2.166-171.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Poutrel B., Sutra L. Type 5 and 8 capsular polysaccharides are expressed by Staphylococcus aureus isolates from rabbits, poultry, pigs, and horses. J Clin Microbiol. 1993 Feb;31(2):467–469. doi: 10.1128/jcm.31.2.467-469.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rainard P., Sarradin P., Poutrel B. Phenotypic variability of X-protein expression by mastitis-causing Streptococcus agalactiae of serotype NT/X and opsonic activities of specific antibodies. Microb Pathog. 1994 May;16(5):359–372. doi: 10.1006/mpat.1994.1036. [DOI] [PubMed] [Google Scholar]
  21. Sheagren J. N. Staphylococcus aureus. The persistent pathogen (first of two parts). N Engl J Med. 1984 May 24;310(21):1368–1373. doi: 10.1056/NEJM198405243102107. [DOI] [PubMed] [Google Scholar]
  22. Sheagren J. N. Staphylococcus aureus. The persistent pathogen (second of two parts). N Engl J Med. 1984 May 31;310(22):1437–1442. doi: 10.1056/NEJM198405313102206. [DOI] [PubMed] [Google Scholar]
  23. Sompolinsky D., Samra Z., Karakawa W. W., Vann W. F., Schneerson R., Malik Z. Encapsulation and capsular types in isolates of Staphylococcus aureus from different sources and relationship to phage types. J Clin Microbiol. 1985 Nov;22(5):828–834. doi: 10.1128/jcm.22.5.828-834.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stringfellow W. T., Dassy B., Lieb M., Fournier J. M. Staphylococcus aureus growth and type 5 capsular polysaccharide production in synthetic media. Appl Environ Microbiol. 1991 Feb;57(2):618–621. doi: 10.1128/aem.57.2.618-621.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Xu S., Arbeit R. D., Lee J. C. Phagocytic killing of encapsulated and microencapsulated Staphylococcus aureus by human polymorphonuclear leukocytes. Infect Immun. 1992 Apr;60(4):1358–1362. doi: 10.1128/iai.60.4.1358-1362.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yoshida K., Ekstedt R. D. Relation of mucoid growth of Staphylococcus aureus to clumping factor reaction, morphology in serum-soft agar, and virulence. J Bacteriol. 1968 Oct;96(4):902–908. doi: 10.1128/jb.96.4.902-908.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Clinical and Diagnostic Laboratory Immunology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES