Skip to main content
Clinical and Diagnostic Laboratory Immunology logoLink to Clinical and Diagnostic Laboratory Immunology
. 1997 May;4(3):358–361. doi: 10.1128/cdli.4.3.358-361.1997

Function and phenotype of immature CD4+ lymphocytes in healthy infants and early lymphocyte activation in uninfected infants of human immunodeficiency virus-infected mothers.

K C Rich 1, J N Siegel 1, C Jennings 1, R J Rydman 1, A L Landay 1
PMCID: PMC170532  PMID: 9144377

Abstract

The function and phenotypes of CD4+ lymphocytes in infants are different than in adults and are modulated by maturational changes and exposure to environmental antigens. Infants of non-human immunodeficiency virus (HIV)-infected mothers and uninfected infants of HIV-infected mothers, 0 to 6 months of age, were examined for CD4+ lymphocyte function by in vitro interleukin-2 (IL-2) production and for CD4+ phenotypes by three-color flow cytometry. A minority of these uninfected infants (28%) had functional responses similar to those of healthy adult women (IL-2 production in response to anti-CD3, alloantigen, and mitogen), while the remainder were capable of responding to alloantigen and mitogen but not to anti-CD3. We did demonstrate reduced phytohemagglutinin-stimulated IL-2 production in uninfected infants born to HIV-seropositive mothers compared to that in infants from seronegative mothers. The proportions of CD3+ CD4+, CD4+ HLA-DR- CD38+, and CD4+ CD45RA+ RO- (naive) lymphocytes were much higher in infants than in adults, and the proportions of CD4+ CD45RA- RO+ (memory) and CD4+ CD25+ (IL-2 receptor-bearing) lymphocytes were lower in infants than in adults. The proportions of activated (CD4+ HLA-DR+ CD38+) and memory (CD4+ CD45RA- RO+) lymphocytes were increased in uninfected infants of HIV-infected mothers compared to infants of uninfected mothers. Therefore, T-helper-cell function is immature in many infants, but the CD4+ lymphocytes of some HIV-exposed, uninfected infants have been stimulated by antigen at an early age.

Full Text

The Full Text of this article is available as a PDF (198.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bessler H., Sirota L., Notti I., Milo T., Djaldetti M. IL-2 receptor gene expression and IL-2 production by human preterm newborns' cells. Clin Exp Immunol. 1993 Sep;93(3):479–483. doi: 10.1111/j.1365-2249.1993.tb08204.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borkowsky W., Moore T., Krasinski K., Ajuang-Simbiri K. O., Holzman R. Evolution of phenotypic memory T cells in HIV-1 infected infants and children. Clin Immunol Immunopathol. 1992 Jun;63(3):280–284. doi: 10.1016/0090-1229(92)90234-f. [DOI] [PubMed] [Google Scholar]
  3. Bryson Y. J., Pang S., Wei L. S., Dickover R., Diagne A., Chen I. S. Clearance of HIV infection in a perinatally infected infant. N Engl J Med. 1995 Mar 30;332(13):833–838. doi: 10.1056/NEJM199503303321301. [DOI] [PubMed] [Google Scholar]
  4. Chheda S., Palkowetz K. H., Rassin D. K., Goldman A. S. Deficient quantitative expression of CD45 isoforms on CD4+ and CD8+ T cell subpopulations and subsets of CD45RA(low)CD45RO(low) T cells in newborn blood. Biol Neonate. 1996;69(2):128–132. doi: 10.1159/000244287. [DOI] [PubMed] [Google Scholar]
  5. Clerici M., DePalma L., Roilides E., Baker R., Shearer G. M. Analysis of T helper and antigen-presenting cell functions in cord blood and peripheral blood leukocytes from healthy children of different ages. J Clin Invest. 1993 Jun;91(6):2829–2836. doi: 10.1172/JCI116526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clerici M., Sison A. V., Berzofsky J. A., Rakusan T. A., Brandt C. D., Ellaurie M., Villa M., Colie C., Venzon D. J., Sever J. L. Cellular immune factors associated with mother-to-infant transmission of HIV. AIDS. 1993 Nov;7(11):1427–1433. doi: 10.1097/00002030-199311000-00004. [DOI] [PubMed] [Google Scholar]
  7. Clerici M., Stocks N. I., Zajac R. A., Boswell R. N., Lucey D. R., Via C. S., Shearer G. M. Detection of three distinct patterns of T helper cell dysfunction in asymptomatic, human immunodeficiency virus-seropositive patients. Independence of CD4+ cell numbers and clinical staging. J Clin Invest. 1989 Dec;84(6):1892–1899. doi: 10.1172/JCI114376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Erkeller-Yuksel F. M., Deneys V., Yuksel B., Hannet I., Hulstaert F., Hamilton C., Mackinnon H., Stokes L. T., Munhyeshuli V., Vanlangendonck F. Age-related changes in human blood lymphocyte subpopulations. J Pediatr. 1992 Feb;120(2 Pt 1):216–222. doi: 10.1016/s0022-3476(05)80430-5. [DOI] [PubMed] [Google Scholar]
  9. Fan J., Bass H. Z., Fahey J. L. Elevated IFN-gamma and decreased IL-2 gene expression are associated with HIV infection. J Immunol. 1993 Nov 1;151(9):5031–5040. [PubMed] [Google Scholar]
  10. Froebel K. S., Doherty K. V., Whitelaw J. A., Hague R. A., Mok J. Y., Bird A. G. Increased expression of the CD45RO (memory) antigen on T cells in HIV-infected children. AIDS. 1991 Jan;5(1):97–99. doi: 10.1097/00002030-199101000-00015. [DOI] [PubMed] [Google Scholar]
  11. Hall M. A., Hickman M. E., Baker C. J., Edwards M. S. Complement and antibody in neutrophil-mediated killing of type V group B streptococcus. J Infect Dis. 1994 Jul;170(1):88–93. doi: 10.1093/infdis/170.1.88. [DOI] [PubMed] [Google Scholar]
  12. Hayward A. R., Lee J., Beverley P. C. Ontogeny of expression of UCHL1 antigen on TcR-1+ (CD4/8) and TcR delta+ T cells. Eur J Immunol. 1989 Apr;19(4):771–773. doi: 10.1002/eji.1830190430. [DOI] [PubMed] [Google Scholar]
  13. Ibegbu C., Spira T. J., Nesheim S., Mendez H., Lee F., Polliotti B., Caba J., Nahmias A. Subpopulations of T and B cells in perinatally HIV-infected and noninfected age-matched children compared with those in adults. Clin Immunol Immunopathol. 1994 Apr;71(1):27–32. doi: 10.1006/clin.1994.1047. [DOI] [PubMed] [Google Scholar]
  14. Leonard W. J., Depper J. M., Uchiyama T., Smith K. A., Waldmann T. A., Greene W. C. A monoclonal antibody that appears to recognize the receptor for human T-cell growth factor; partial characterization of the receptor. Nature. 1982 Nov 18;300(5889):267–269. doi: 10.1038/300267a0. [DOI] [PubMed] [Google Scholar]
  15. Lewis D. B., Yu C. C., Meyer J., English B. K., Kahn S. J., Wilson C. B. Cellular and molecular mechanisms for reduced interleukin 4 and interferon-gamma production by neonatal T cells. J Clin Invest. 1991 Jan;87(1):194–202. doi: 10.1172/JCI114970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McIntosh K., Pitt J., Brambilla D., Carroll S., Diaz C., Handelsman E., Moye J., Rich K. Blood culture in the first 6 months of life for the diagnosis of vertically transmitted human immunodeficiency virus infection. The Women and Infants Transmission Study Group. J Infect Dis. 1994 Oct;170(4):996–1000. doi: 10.1093/infdis/170.4.996. [DOI] [PubMed] [Google Scholar]
  17. McMahon D. K., Winkelstein A., Armstrong J. A., Pazin G. J., Hawk H., Ho M. Zidovudine therapy is associated with an increased capacity of phytohemagglutinin-stimulated cells to express interleukin-2 receptors. Pittsburgh AIDS Clinical Trial Unit. AIDS. 1991 May;5(5):491–496. doi: 10.1097/00002030-199105000-00003. [DOI] [PubMed] [Google Scholar]
  18. Meuer S. C., Hussey R. E., Penta A. C., Fitzgerald K. A., Stadler B. M., Schlossman S. F., Reinherz E. L. Cellular origin of interleukin 2 (IL 2) in man: evidence for stimulus-restricted IL 2 production by T4+ and T8+ T lymphocytes. J Immunol. 1982 Sep;129(3):1076–1079. [PubMed] [Google Scholar]
  19. Mosmann T. R., Yokota T., Kastelein R., Zurawski S. M., Arai N., Takebe Y. Species-specificity of T cell stimulating activities of IL 2 and BSF-1 (IL 4): comparison of normal and recombinant, mouse and human IL 2 and BSF-1 (IL 4). J Immunol. 1987 Mar 15;138(6):1813–1816. [PubMed] [Google Scholar]
  20. Newell M. L., Dunn D., De Maria A., Ferrazin A., De Rossi A., Giaquinto C., Levy J., Alimenti A., Ehrnst A., Bohlin A. B. Detection of virus in vertically exposed HIV-antibody-negative children. Lancet. 1996 Jan 27;347(8996):213–215. doi: 10.1016/s0140-6736(96)90401-8. [DOI] [PubMed] [Google Scholar]
  21. Papadogiannakis N., Johnsen S. A., Olding L. B. Monocyte-regulated hyporesponsiveness of human cord blood lymphocytes to OKT3-monoclonal-antibody-induced mitogenesis. Scand J Immunol. 1986 Jan;23(1):91–99. doi: 10.1111/j.1365-3083.1986.tb01946.x. [DOI] [PubMed] [Google Scholar]
  22. Pilarski L. M., Yacyshyn B. R., Jensen G. S., Pruski E., Pabst H. F. Beta 1 integrin (CD29) expression on human postnatal T cell subsets defined by selective CD45 isoform expression. J Immunol. 1991 Aug 1;147(3):830–837. [PubMed] [Google Scholar]
  23. Plaeger-Marshall S., Isacescu V., O'Rourke S., Bertolli J., Bryson Y. J., Stiehm E. R. T cell activation in pediatric AIDS pathogenesis: three-color immunophenotyping. Clin Immunol Immunopathol. 1994 Apr;71(1):19–26. doi: 10.1006/clin.1994.1046. [DOI] [PubMed] [Google Scholar]
  24. Rich K. C., Siegel J. N., Jennings C., Rydman R. J., Landay A. L. CD4+ lymphocytes in perinatal human immunodeficiency virus (HIV) infection: evidence for pregnancy-induced immune depression in uninfected and HIV-infected women. J Infect Dis. 1995 Nov;172(5):1221–1227. doi: 10.1093/infdis/172.5.1221. [DOI] [PubMed] [Google Scholar]
  25. Saito S., Kato Y., Maruyama M., Ichijo M. A study of interferon-gamma and interleukin-2 production in premature neonates and neonates with intrauterine growth retardation. Am J Reprod Immunol. 1992 Jan-Mar;27(1-2):63–68. doi: 10.1111/j.1600-0897.1992.tb00725.x. [DOI] [PubMed] [Google Scholar]
  26. Shearer G. M., Clerici M. Early T-helper cell defects in HIV infection. AIDS. 1991 Mar;5(3):245–253. doi: 10.1097/00002030-199103000-00001. [DOI] [PubMed] [Google Scholar]
  27. Tedder T. F., Clement L. T., Cooper M. D. Human lymphocyte differentiation antigens HB-10 and HB-11. I. Ontogeny of antigen expression. J Immunol. 1985 May;134(5):2983–2988. [PubMed] [Google Scholar]
  28. Wu C. Y., Demeure C. E., Gately M., Podlaski F., Yssel H., Kiniwa M., Delespesse G. In vitro maturation of human neonatal CD4 T lymphocytes. I. Induction of IL-4-producing cells after long-term culture in the presence of IL-4 plus either IL-2 or IL-12. J Immunol. 1994 Feb 1;152(3):1141–1153. [PubMed] [Google Scholar]

Articles from Clinical and Diagnostic Laboratory Immunology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES