Abstract
The observations from the present study indicate that vaginal formulations of the sulfated polysaccharide carrageenan are highly effective in protecting mice from herpes simplex virus type 2 (HSV-2) infection. Test formulations were placed in the vaginas of progestin-treated mice prior to inoculation with HSV-2. Infection was determined by the presence of inflammation in the genital region and death. At a dose of virus that infected half of the control animals, 1% solutions of either lambda, kappa, or iota carrageenan prevented infection of almost all of the animals. Concentrations as low as 0.05% protected a large majority of the mice. At a dose of virus that infected all of the control mice, 1% solutions of carrageenans protected 85% of the inoculated mice. Other sulfated polysaccharides were less effective or showed no efficacy in preventing HSV-2 infection. These findings suggest that a vaginal formulation of carrageenan may be effective in blocking sexual transmission of HSV-2 in women.
Full Text
The Full Text of this article is available as a PDF (165.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asculai S. S., Weis M. T., Rancourt M. W., Kupferberg A. B. Inactivation of herpes simplex viruses by nonionic surfactants. Antimicrob Agents Chemother. 1978 Apr;13(4):686–690. doi: 10.1128/aac.13.4.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baba M., Snoeck R., Pauwels R., de Clercq E. Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob Agents Chemother. 1988 Nov;32(11):1742–1745. doi: 10.1128/aac.32.11.1742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jennings R., Clegg A. The inhibitory effect of spermicidal agents on replication of HSV-2 and HIV-1 in-vitro. J Antimicrob Chemother. 1993 Jul;32(1):71–82. doi: 10.1093/jac/32.1.71. [DOI] [PubMed] [Google Scholar]
- Knotts F. B., Cook M. L., Stevens J. G. Latent herpes simplex virus in the central nervous system of rabbits and mice. J Exp Med. 1973 Sep 1;138(3):740–744. doi: 10.1084/jem.138.3.740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marchetti M., Pisani S., Pietropaolo V., Seganti L., Nicoletti R., Orsi N. Inhibition of herpes simplex virus infection by negatively charged and neutral carbohydrate polymers. J Chemother. 1995 Apr;7(2):90–96. doi: 10.1179/joc.1995.7.2.90. [DOI] [PubMed] [Google Scholar]
- McDermott M. R., Smiley J. R., Leslie P., Brais J., Rudzroga H. E., Bienenstock J. Immunity in the female genital tract after intravaginal vaccination of mice with an attenuated strain of herpes simplex virus type 2. J Virol. 1984 Sep;51(3):747–753. doi: 10.1128/jvi.51.3.747-753.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moench T. R., Whaley K. J., Mandrell T. D., Bishop B. D., Witt C. J., Cone R. A. The cat/feline immunodeficiency virus model for transmucosal transmission of AIDS: nonoxynol-9 contraceptive jelly blocks transmission by an infected cell inoculum. AIDS. 1993 Jun;7(6):797–802. doi: 10.1097/00002030-199306000-00006. [DOI] [PubMed] [Google Scholar]
- NAHMIAS A. J., KIBRICK S., BERNFELD P. EFFECT OF SYNTHETIC AND BIOLOGICAL POLYANIONS ON HERPES SIMPLEX VIRUS. Proc Soc Exp Biol Med. 1964 Apr;115:993–996. doi: 10.3181/00379727-115-29098. [DOI] [PubMed] [Google Scholar]
- Parr M. B., Kepple L., McDermott M. R., Drew M. D., Bozzola J. J., Parr E. L. A mouse model for studies of mucosal immunity to vaginal infection by herpes simplex virus type 2. Lab Invest. 1994 Mar;70(3):369–380. [PubMed] [Google Scholar]
- Pearce-Pratt R., Phillips D. M. Studies of adhesion of lymphocytic cells: implications for sexual transmission of human immunodeficiency virus. Biol Reprod. 1993 Mar;48(3):431–445. doi: 10.1095/biolreprod48.3.431. [DOI] [PubMed] [Google Scholar]
- Pearce-Pratt R., Phillips D. M. Sulfated polysaccharides inhibit lymphocyte-to-epithelial transmission of human immunodeficiency virus-1. Biol Reprod. 1996 Jan;54(1):173–182. doi: 10.1095/biolreprod54.1.173. [DOI] [PubMed] [Google Scholar]
- Stafford M. K., Cain D., Rosenstein I., Fontaine E. A., McClure M., Flanagan A. M., Smith J. R., Taylor-Robinson D., Weber J., Kitchen V. S. A placebo-controlled, double-blind prospective study in healthy female volunteers of dextrin sulphate gel: a novel potential intravaginal virucide. J Acquir Immune Defic Syndr Hum Retrovirol. 1997 Mar 1;14(3):213–218. doi: 10.1097/00042560-199703010-00003. [DOI] [PubMed] [Google Scholar]
- Stevens J. G., Cook M. L. Latent herpes simplex virus in spinal ganglia of mice. Science. 1971 Aug 27;173(3999):843–845. doi: 10.1126/science.173.3999.843. [DOI] [PubMed] [Google Scholar]
- Tan X., Pearce-Pratt R., Phillips D. M. Productive infection of a cervical epithelial cell line with human immunodeficiency virus: implications for sexual transmission. J Virol. 1993 Nov;67(11):6447–6452. doi: 10.1128/jvi.67.11.6447-6452.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tan X., Phillips D. M. Cell-mediated infection of cervix derived epithelial cells with primary isolates of human immunodeficiency virus. Arch Virol. 1996;141(7):1177–1189. doi: 10.1007/BF01718823. [DOI] [PubMed] [Google Scholar]
- Walz M. A., Price R. W., Notkins A. L. Latent ganglionic infection with herpes simplex virus types 1 and 2: viral reactivation in vivo after neurectomy. Science. 1974 Jun 14;184(4142):1185–1187. doi: 10.1126/science.184.4142.1185. [DOI] [PubMed] [Google Scholar]
- Whaley K. J., Barratt R. A., Zeitlin L., Hoen T. E., Cone R. A. Nonoxynol-9 protects mice against vaginal transmission of genital herpes infections. J Infect Dis. 1993 Oct;168(4):1009–1011. doi: 10.1093/infdis/168.4.1009. [DOI] [PubMed] [Google Scholar]