Skip to main content
Clinical and Diagnostic Laboratory Immunology logoLink to Clinical and Diagnostic Laboratory Immunology
. 1997 Jul;4(4):493–495. doi: 10.1128/cdli.4.4.493-495.1997

Presence of a neutralizing domain in isolates of rubella virus in Cordoba, Argentina.

P Cordoba 1, S L Grutadauria 1, C Cuffini 1, M T Zapata 1
PMCID: PMC170558  PMID: 9220172

Abstract

We studied the presence of a neutralizing epitope of rubella virus (RV) in locally circulating strains in Cordoba, Argentina, using binding by the monoclonal antibody (MAb) H3. This epitope is contained in a sequence of the E1 glycoprotein (E1208-239) represented by the synthetic peptide SP15. H3 MAb showed specific binding to SP15 by enzyme-linked immunosorbent assay (ELISA). One wild-type postnatal isolate, four clones derived from this isolate, and one congenital isolate were reactive with H3 by ELISA. These results suggest that the region of RV represented by SP15 is a domain present in locally circulating strains.

Full Text

The Full Text of this article is available as a PDF (101.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cordoba P., Grutadauria S., Cuffini C., Zapata M. T. Different affinity of monoclonal antibodies for conserved neutralizing epitopes on two strains of rubella virus. Viral Immunol. 1997;10(2):103–110. doi: 10.1089/vim.1997.10.103. [DOI] [PubMed] [Google Scholar]
  2. Dorsett P. H., Miller D. C., Green K. Y., Byrd F. I. Structure and function of the rubella virus proteins. Rev Infect Dis. 1985 Mar-Apr;7 (Suppl 1):S150–S156. doi: 10.1093/clinids/7.supplement_1.s150. [DOI] [PubMed] [Google Scholar]
  3. Ey P. L., Prowse S. J., Jenkin C. R. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry. 1978 Jul;15(7):429–436. doi: 10.1016/0161-5890(78)90070-6. [DOI] [PubMed] [Google Scholar]
  4. Gerna G., Revello M. G., Dovis M., Petruzzelli E., Achilli G., Percivalle E., Torsellini M. Synergistic neutralization of rubella virus by monoclonal antibodies to viral haemagglutinin. J Gen Virol. 1987 Jul;68(Pt 7):2007–2012. doi: 10.1099/0022-1317-68-7-2007. [DOI] [PubMed] [Google Scholar]
  5. Green K. Y., Dorsett P. H. Rubella virus antigens: localization of epitopes involved in hemagglutination and neutralization by using monoclonal antibodies. J Virol. 1986 Mar;57(3):893–898. doi: 10.1128/jvi.57.3.893-898.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ho-Terry L., Cohen A. Rubella virus haemagglutinin: association with a single virion glycoprotein. Arch Virol. 1985;84(3-4):207–215. doi: 10.1007/BF01378973. [DOI] [PubMed] [Google Scholar]
  7. Ilonen J., Seppänen H., Närvänen A., Korkolainen M., Salmi A. A. Recognition of synthetic peptides with sequences of rubella virus E1 polypeptide by antibodies and T lymphocytes. Viral Immunol. 1992 Fall;5(3):221–228. doi: 10.1089/vim.1992.5.221. [DOI] [PubMed] [Google Scholar]
  8. Marquez A., Zapata M. T. Rubéola y embarazo: control serológico en la determinación de riesgos y daños. Bol Oficina Sanit Panam. 1984 Aug;97(2):95–104. [PubMed] [Google Scholar]
  9. Mitchell L. A., Zhang T., Ho M., Décarie D., Tingle A. J., Zrein M., Lacroix M. Characterization of rubella virus-specific antibody responses by using a new synthetic peptide-based enzyme-linked immunosorbent assay. J Clin Microbiol. 1992 Jul;30(7):1841–1847. doi: 10.1128/jcm.30.7.1841-1847.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nates S. V., Márquez A., Zapata M. Características morfológicas de placas producidas por el virus rubeola en cultivos de células Vero. Rev Argent Microbiol. 1986;18(1):1–6. [PubMed] [Google Scholar]
  11. Oker-Blom C., Kalkkinen N., Käriäinen L., Pettersson R. F. Rubella virus contains one capsid protein and three envelope glycoproteins, E1, E2a, and E2b. J Virol. 1983 Jun;46(3):964–973. doi: 10.1128/jvi.46.3.964-973.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rhim J. S., Schell K. Cytopathic and plaque assay of rubella virus in a line of African green monkey kiency cells (Vero). Proc Soc Exp Biol Med. 1967 Jun;125(2):602–606. doi: 10.3181/00379727-125-32157. [DOI] [PubMed] [Google Scholar]
  13. Trudel M., Nadon F., Séguin C., Amarouch A., Payment P., Gillam S. E1 glycoprotein of rubella virus carries an epitope that binds a neutralizing antibody. J Virol Methods. 1985 Dec;12(3-4):243–250. doi: 10.1016/0166-0934(85)90135-1. [DOI] [PubMed] [Google Scholar]
  14. Waxham M. N., Wolinsky J. S. A model of the structural organization of rubella virions. Rev Infect Dis. 1985 Mar-Apr;7 (Suppl 1):S133–S139. doi: 10.1093/clinids/7.supplement_1.s133. [DOI] [PubMed] [Google Scholar]
  15. Waxham M. N., Wolinsky J. S. Detailed immunologic analysis of the structural polypeptides of rubella virus using monoclonal antibodies. Virology. 1985 May;143(1):153–165. doi: 10.1016/0042-6822(85)90104-7. [DOI] [PubMed] [Google Scholar]
  16. Wolinsky J. S., McCarthy M., Allen-Cannady O., Moore W. T., Jin R., Cao S. N., Lovett A., Simmons D. Monoclonal antibody-defined epitope map of expressed rubella virus protein domains. J Virol. 1991 Aug;65(8):3986–3994. doi: 10.1128/jvi.65.8.3986-3994.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wolinsky J. S., Sukholutsky E., Moore W. T., Lovett A., McCarthy M., Adame B. An antibody- and synthetic peptide-defined rubella virus E1 glycoprotein neutralization domain. J Virol. 1993 Feb;67(2):961–968. doi: 10.1128/jvi.67.2.961-968.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Xiang J., Moyana T., Chen Z., Han W., Ping T., Li E. Production and characterization of a tumor-specific monoclonal antibody ACT19 recognizing an epitope distinctive from sialosyl-Tn on the TAG72 antigen. Tumori. 1993 Feb 28;79(1):58–65. doi: 10.1177/030089169307900113. [DOI] [PubMed] [Google Scholar]
  19. Zapata M., Chernesky M., Mahony J. Indirect immunofluorescence staining of Chlamydia trachomatis inclusions in microculture plates with monoclonal antibodies. J Clin Microbiol. 1984 Jun;19(6):937–939. doi: 10.1128/jcm.19.6.937-939.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zrein M., Joncas J. H., Pedneault L., Robillard L., Dwyer R. J., Lacroix M. Comparison of a whole-virus enzyme immunoassay (EIA) with a peptide-based EIA for detecting rubella virus immunoglobulin G antibodies following rubella vaccination. J Clin Microbiol. 1993 Jun;31(6):1521–1524. doi: 10.1128/jcm.31.6.1521-1524.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Clinical and Diagnostic Laboratory Immunology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES