Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1977 Jan;33(1):69–73. doi: 10.1128/aem.33.1.69-73.1977

Fermentation of L-aspartate by a saccharolytic strain of Bacteroides melaninogenicus.

J C Wong, J K Dyer, J L Tribble
PMCID: PMC170576  PMID: 13713

Abstract

Resting cells of Bacteroides melaninogenicus fermented L-[14C]aspartate as a single substrate. The 14C-labeled products included succinate, acetate, CO2, oxaloacetate, formate, malate, glycine, alanine, and fumarate in the relative percentages 68, 15, 9.9, 2.7, 1.8, 1.0, 0.7, 0.5, and 0.06, respectively, based on the total counts per minute of the L-[14C]aspartate fermented. Ammonia was produced in high amounts, indicating that 96% of the L-aspartate fermented was deaminated. These data suggest that L-aspartate is mainly being reduced through a number of intermediate reactions involving enzymes of the tricarboxylic acid cycle to succinate. L-[14C]asparagine was also fermented by resting cells of B. melaninogenicus to form L-aspartate, which was subsequently, but less actively, fermented.

Full text

PDF
69

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BUSCH H., HURLBERT R. B., POTTER V. R. Anion exchange chromatography of acids of the citric acid cycle. J Biol Chem. 1952 May;196(2):717–727. [PubMed] [Google Scholar]
  2. Courant P. R., Gibbons R. J. Biochemical and immunological heterogeneity of Bacteroides melaninogenicus. Arch Oral Biol. 1967 Dec;12(12):1605–1613. doi: 10.1016/0003-9969(67)90194-x. [DOI] [PubMed] [Google Scholar]
  3. Jackson R. C., Handschumacher R. E. Escherichia coli L-asparaginase. Catalytic activity and subunit nature. Biochemistry. 1970 Sep 1;9(18):3585–3590. doi: 10.1021/bi00820a013. [DOI] [PubMed] [Google Scholar]
  4. Macy J., Probst I., Gottschalk G. Evidence for cytochrome involvement in fumarate reduction and adenosine 5'-triphosphate synthesis by Bacteroides fragilis grown in the presence of hemin. J Bacteriol. 1975 Aug;123(2):436–442. doi: 10.1128/jb.123.2.436-442.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Miles D. O., Dyer J. K., Wong J. C. Influence of amino acids on the growth of Bacteroides melaninogenicus. J Bacteriol. 1976 Aug;127(2):899–903. doi: 10.1128/jb.127.2.899-903.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Mitruka B. M., Costilow R. N. Arginine and ornithine catabolism by Clostridium botulinum. J Bacteriol. 1967 Jan;93(1):295–301. doi: 10.1128/jb.93.1.295-301.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rizza V., Sinclair P. R., White D. C., Cuorant P. R. Electron transport system of the protoheme-requiring anaerobe Bacteroides melaninogenicus. J Bacteriol. 1968 Sep;96(3):665–671. doi: 10.1128/jb.96.3.665-671.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. SAWYER S. J., MACDONALD J. B., GIBBONS R. J. Biochemical characteristics of Bacteroides melaninogenicus. A study of thirty-one strains. Arch Oral Biol. 1962 Nov-Dec;7:685–691. doi: 10.1016/0003-9969(62)90117-6. [DOI] [PubMed] [Google Scholar]
  9. WHITE D. C., BRYANT M. P., CALDWELL D. R. Cytochromelinked fermentation in Bacteroides ruminicola. J Bacteriol. 1962 Oct;84:822–828. doi: 10.1128/jb.84.4.822-828.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wahren A., Gibbons R. J. Amino acid fermentation by Bacteroides melaninogenicus. Antonie Van Leeuwenhoek. 1970;36(1):149–159. doi: 10.1007/BF02069017. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES