Skip to main content
Clinical and Diagnostic Laboratory Immunology logoLink to Clinical and Diagnostic Laboratory Immunology
. 1997 Sep;4(5):499–503. doi: 10.1128/cdli.4.5.499-503.1997

Poliovirus-specific immunoglobulin A in persons vaccinated with inactivated poliovirus vaccine in The Netherlands.

M M Herremans 1, A M van Loon 1, J H Reimerink 1, H C Rümke 1, H G van der Avoort 1, T G Kimman 1, M P Koopmans 1
PMCID: PMC170580  PMID: 9302194

Abstract

In The Netherlands the inactivated poliovirus vaccine (IPV) is used for protection against poliomyelitis. It is not clear if parenteral vaccination with IPV can lead to priming of the mucosal immune system. We developed and evaluated enzyme-linked immunosorbent assays for the detection of poliovirus serotype-specific immunoglobulin A (IgA) and secretory IgA antibodies. Using these assays we examined the kinetics of the IgA response in sequential serum samples from 15 poliomyelitis patients after natural infection with serotype 3 poliovirus. In 36% of the patients IgA remained present for up to 5 months postinfection. Furthermore, we examined, in an IPV-vaccinated population, the presence of IgA antibodies in sera from young children (4 to 12 years of age; n = 177), sera from older children (between 13 and 15 years of age; n = 123), sera from healthy blood donors (n = 66), and sera from naturally immune elderly persons (n = 54). The seroprevalence of IgA to all three serotypes was low in young vaccinated children (5 to 7%), and the seroprevalence of IgA types 2 and 3 was low in older vaccinated children (2 to 3%). The seroprevalence of antibodies to type 1 was significantly higher (18%) in older children than in younger children. This higher seroprevalence is most likely explained by the persistence of IgA following infection with the serotype 1 wild-type poliovirus strain during the 1978 epidemic. In healthy adults, the seroprevalence of type 1- and type 2-specific IgA was significantly higher than that in young children. These results suggest that at least part of the IgA found in the older population is induced by infections unrelated to the IPV vaccination schedule. Finally, we found that parenteral vaccination with IPV was able to boost secretory IgA responses in 74 to 87% of a naturally exposed elderly population (n = 54). While the presence of secretory IgA in IPV-vaccinated persons has been documented previously, our findings suggest that mucosal priming with live virus is necessary to obtain an IgA response after IPV booster vaccination.

Full Text

The Full Text of this article is available as a PDF (220.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benedetti R., Massouh E., Fló J. The bone marrow as a site of antibody production after a mucosal immunization. Immunol Lett. 1995 Dec;48(2):109–115. doi: 10.1016/0165-2478(95)02453-0. [DOI] [PubMed] [Google Scholar]
  2. Brokstad K. A., Cox R. J., Olofsson J., Jonsson R., Haaheim L. R. Parenteral influenza vaccination induces a rapid systemic and local immune response. J Infect Dis. 1995 Jan;171(1):198–203. doi: 10.1093/infdis/171.1.198. [DOI] [PubMed] [Google Scholar]
  3. Carlsson B., Zaman S., Mellander L., Jalil F., Hanson L. A. Secretory and serum immunoglobulin class-specific antibodies to poliovirus after vaccination. J Infect Dis. 1985 Dec;152(6):1238–1244. doi: 10.1093/infdis/152.6.1238. [DOI] [PubMed] [Google Scholar]
  4. Conyn-van Spaendonck M. A., Oostvogel P. M., van Loon A. M., van Wijngaarden J. K., Kromhout D. Circulation of poliovirus during the poliomyelitis outbreak in The Netherlands in 1992-1993. Am J Epidemiol. 1996 May 1;143(9):929–935. doi: 10.1093/oxfordjournals.aje.a008836. [DOI] [PubMed] [Google Scholar]
  5. Döring G., Pfeiffer C., Weber U., Mohr-Pennert A., Dorner F. Parenteral application of a Pseudomonas aeruginosa flagella vaccine elicits specific anti-flagella antibodies in the airways of healthy individuals. Am J Respir Crit Care Med. 1995 Apr;151(4):983–985. doi: 10.1164/ajrccm.151.4.7697276. [DOI] [PubMed] [Google Scholar]
  6. Faden H., Modlin J. F., Thoms M. L., McBean A. M., Ferdon M. B., Ogra P. L. Comparative evaluation of immunization with live attenuated and enhanced-potency inactivated trivalent poliovirus vaccines in childhood: systemic and local immune responses. J Infect Dis. 1990 Dec;162(6):1291–1297. doi: 10.1093/infdis/162.6.1291. [DOI] [PubMed] [Google Scholar]
  7. Henry J. L., Jaikaran E. S., Davies J. R., Tomlinson A. J., Mason P. J., Barnes J. M., Beale A. J. A study of poliovaccination in infancy: excretion following challenge with live virus by children given killed or living poliovaccine. J Hyg (Lond) 1966 Mar;64(1):105–120. doi: 10.1017/s0022172400040389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Martynov Iu V., Marinin I. Iu, Deviatkina N. N. Vliianie vaktsinatsii na pokazateli mestnogo immuniteta; opredelenie protivomeningokokkovykh antitel v sliune. Zh Mikrobiol Epidemiol Immunobiol. 1991 Oct;(10):55–58. [PubMed] [Google Scholar]
  9. Moldoveanu Z., Clements M. L., Prince S. J., Murphy B. R., Mestecky J. Human immune responses to influenza virus vaccines administered by systemic or mucosal routes. Vaccine. 1995 Aug;13(11):1006–1012. doi: 10.1016/0264-410x(95)00016-t. [DOI] [PubMed] [Google Scholar]
  10. Nibbeling R., Reimerink J. H., Agboatwala M., Naquib T., Ras A., Poelstra P., van der Avoort H. G., van Loon A. M. A poliovirus type-specific IgM antibody-capture enzyme-linked immunosorbent assay for the rapid diagnosis of poliomyelitis. Clin Diagn Virol. 1994 Apr;2(2):113–126. doi: 10.1016/0928-0197(94)90044-2. [DOI] [PubMed] [Google Scholar]
  11. Ogra P. L., Karzon D. T. Distribution of poliovirus antibody in serum, nasopharynx and alimentary tract following segmental immunization of lower alimentary tract with poliovaccine. J Immunol. 1969 Jun;102(6):1423–1430. [PubMed] [Google Scholar]
  12. Onorato I. M., Modlin J. F., McBean A. M., Thoms M. L., Losonsky G. A., Bernier R. H. Mucosal immunity induced by enhance-potency inactivated and oral polio vaccines. J Infect Dis. 1991 Jan;163(1):1–6. doi: 10.1093/infdis/163.1.1. [DOI] [PubMed] [Google Scholar]
  13. Osterhaus A. D., van Wezel A. L., Hazendonk T. G., UytdeHaag F. G., van Asten J. A., van Steenis B. Monoclonal antibodies to polioviruses. Comparison of intratypic strain differentiation of poliovirus type 1 using monoclonal antibodies versus cross-absorbed antisera. Intervirology. 1983;20(2-3):129–136. doi: 10.1159/000149381. [DOI] [PubMed] [Google Scholar]
  14. Rümke H. C., Oostvogel P. M., Van Steenis G., Van Loon A. M. Poliomyelitis in The Netherlands: a review of population immunity and exposure between the epidemics in 1978 and 1992. Epidemiol Infect. 1995 Oct;115(2):289–298. doi: 10.1017/s0950268800058416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schaap G. J., Bijkerk H., Coutinho R. A., Kapsenberg J. G., van Wezel A. L. The spread of wild poliovirus in the well-vaccinated Netherlands in connection with the 1978 epidemic. Prog Med Virol. 1984;29:124–140. [PubMed] [Google Scholar]
  16. Slifka M. K., Matloubian M., Ahmed R. Bone marrow is a major site of long-term antibody production after acute viral infection. J Virol. 1995 Mar;69(3):1895–1902. doi: 10.1128/jvi.69.3.1895-1902.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Smith D. J., Gahnberg L., Taubman M. A., Ebersole J. L. Salivary antibody responses to oral and parenteral vaccines in children. J Clin Immunol. 1986 Jan;6(1):43–49. doi: 10.1007/BF00915363. [DOI] [PubMed] [Google Scholar]
  18. van Wezel A. L., Hazendonk A. G. Intratypic serodifferentiation of poliomyelitis virus strains by strain-specific antisera. Intervirology. 1979;11(1):2–8. doi: 10.1159/000149005. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Diagnostic Laboratory Immunology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES