Skip to main content
Clinical and Diagnostic Laboratory Immunology logoLink to Clinical and Diagnostic Laboratory Immunology
. 1997 Sep;4(5):522–529. doi: 10.1128/cdli.4.5.522-529.1997

Heterogeneity of tbpB, the transferrin-binding protein B gene, among serogroup B Neisseria meningitidis strains of the ET-5 complex.

B Rokbi 1, M Mignon 1, D A Caugant 1, M J Quentin-Millet 1
PMCID: PMC170586  PMID: 9302199

Abstract

ET-5 complex strains of Neisseria meningitidis were traced intercontinentally and have been causing hyperendemic meningitis on a worldwide scale. In an attempt to develop a fully broad cross-reactive transferrin-binding protein B (TbpB)-based vaccine, we undertook to assess the extent of variability of TbpB proteins among strains of this epidemiological complex. For this purpose, a PCR-based method was developed to study the heterogeneity of the tbpB genes from 31 serogroup B N. meningitidis strains belonging to the ET-5 complex. To define adequate primers, the tbpB gene from an ET-5 complex strain, 8680 (B:15:P1.3; isolated in Chile in 1987), was cloned and the nucleotide sequence was determined and compared to two other previously published tbpB sequences. A tbpB fragment was amplified from genomic DNA from each of the 31 strains. By this method, heterogeneity in size was observed and further characterized by restriction pattern analysis with four restriction enzymes and by sequencing tbpB genes from three other ET-5 complex strains. Four distinct tbpB gene types were identified. Fifty-five percent of the strains studied (17/31) harbored tbpB genes similar to that of strain BZ83 (B:15:-) isolated in The Netherlands in 1984. Ten of the 31 strains (32.2%) had tbpB genes close to that of strain M982. Only 3 of the 31 (9.6%) were found to harbor tbpB genes close to that of strain 8680, and finally one strain, 8710 (B:15:P1.3; isolated in Chile in 1987), was found to harbor a tbpB gene different from all the others. These results demonstrated a pronounced variability among tbpB alleles within a limited number of ET-5 complex strains collected over a 19-year period. Despite the genetic heterogeneity observed, specific antisera raised to purified Tbps from ET-5 complex strains showed broad cross-reactivity between different TbpBs both by Western blot analysis and bactericidal assay, confirming that a limited number of TbpB molecules included in a vaccine are likely to induce broadly cross-reactive antibodies against the different strains.

Full Text

The Full Text of this article is available as a PDF (469.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achtman M., Wall R. A., Bopp M., Kusecek B., Morelli G., Saken E., Hassan-King M. Variation in class 5 protein expression by serogroup A meningococci during a meningitis epidemic. J Infect Dis. 1991 Aug;164(2):375–382. doi: 10.1093/infdis/164.2.375. [DOI] [PubMed] [Google Scholar]
  2. Ala'Aldeen D. A., Borriello S. P. The meningococcal transferrin-binding proteins 1 and 2 are both surface exposed and generate bactericidal antibodies capable of killing homologous and heterologous strains. Vaccine. 1996 Jan;14(1):49–53. doi: 10.1016/0264-410x(95)00136-o. [DOI] [PubMed] [Google Scholar]
  3. Ala'Aldeen D. A., Powell N. B., Wall R. A., Borriello S. P. Localization of the meningococcal receptors for human transferrin. Infect Immun. 1993 Feb;61(2):751–759. doi: 10.1128/iai.61.2.751-759.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ala'Aldeen D. A. Transferrin receptors of Neisseria meningitidis: promising candidates for a broadly cross-protective vaccine. J Med Microbiol. 1996 Apr;44(4):237–243. doi: 10.1099/00222615-44-4-237. [DOI] [PubMed] [Google Scholar]
  5. Caugant D. A., Bol P., Høiby E. A., Zanen H. C., Frøholm L. O. Clones of serogroup B Neisseria meningitidis causing systemic disease in The Netherlands, 1958-1986. J Infect Dis. 1990 Oct;162(4):867–874. doi: 10.1093/infdis/162.4.867. [DOI] [PubMed] [Google Scholar]
  6. Caugant D. A., Bøvre K., Gaustad P., Bryn K., Holten E., Høiby E. A., Frøholm L. O. Multilocus genotypes determined by enzyme electrophoresis of Neisseria meningitidis isolated from patients with systemic disease and from healthy carriers. J Gen Microbiol. 1986 Mar;132(3):641–652. doi: 10.1099/00221287-132-3-641. [DOI] [PubMed] [Google Scholar]
  7. Caugant D. A., Frøholm L. O., Bøvre K., Holten E., Frasch C. E., Mocca L. F., Zollinger W. D., Selander R. K. Intercontinental spread of a genetically distinctive complex of clones of Neisseria meningitidis causing epidemic disease. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4927–4931. doi: 10.1073/pnas.83.13.4927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cornelissen C. N., Sparling P. F. Binding and surface exposure characteristics of the gonococcal transferrin receptor are dependent on both transferrin-binding proteins. J Bacteriol. 1996 Mar;178(5):1437–1444. doi: 10.1128/jb.178.5.1437-1444.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cruz C., Pavez G., Aguilar E., Grawe L., Cam J., Mendez F., Garcia J., Ruiz S., Vicent P., Canepa I. Serotype-specific outbreak of group B meningococcal disease in Iquique, Chile. Epidemiol Infect. 1990 Aug;105(1):119–126. doi: 10.1017/s0950268800047713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Danve B., Lissolo L., Mignon M., Dumas P., Colombani S., Schryvers A. B., Quentin-Millet M. J. Transferrin-binding proteins isolated from Neisseria meningitidis elicit protective and bactericidal antibodies in laboratory animals. Vaccine. 1993 Sep;11(12):1214–1220. doi: 10.1016/0264-410x(93)90045-y. [DOI] [PubMed] [Google Scholar]
  11. Dessen P., Fondrat C., Valencien C., Mugnier C. BISANCE: a French service for access to biomolecular sequence databases. Comput Appl Biosci. 1990 Oct;6(4):355–356. doi: 10.1093/bioinformatics/6.4.355. [DOI] [PubMed] [Google Scholar]
  12. Ferron L., Ferreiros C. M., Criado M. T., Pintor M. Immunogenicity and antigenic heterogeneity of a human transferrin-binding protein in Neisseria meningitidis. Infect Immun. 1992 Jul;60(7):2887–2892. doi: 10.1128/iai.60.7.2887-2892.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gorringe A. R., Borrow R., Fox A. J., Robinson A. Human antibody response to meningococcal transferrin binding proteins: evidence for vaccine potential. Vaccine. 1995 Sep;13(13):1207–1212. doi: 10.1016/0264-410x(95)00055-6. [DOI] [PubMed] [Google Scholar]
  14. Griffiths E., Stevenson P., Ray A. Antigenic and molecular heterogeneity of the transferrin-binding protein of Neisseria meningitidis. FEMS Microbiol Lett. 1990 May;57(1-2):31–36. doi: 10.1016/0378-1097(90)90408-i. [DOI] [PubMed] [Google Scholar]
  15. Hart C. A., Rogers T. R. Meningococcal disease. J Med Microbiol. 1993 Jul;39(1):3–25. doi: 10.1099/00222615-39-1-3. [DOI] [PubMed] [Google Scholar]
  16. Hobbs M. M., Seiler A., Achtman M., Cannon J. G. Microevolution within a clonal population of pathogenic bacteria: recombination, gene duplication and horizontal genetic exchange in the opa gene family of Neisseria meningitidis. Mol Microbiol. 1994 Apr;12(2):171–180. doi: 10.1111/j.1365-2958.1994.tb01006.x. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Legrain M., Findeli A., Villeval D., Quentin-Millet M. J., Jacobs E. Molecular characterization of hybrid Tbp2 proteins from Neisseria meningitidis. Mol Microbiol. 1996 Jan;19(1):159–169. doi: 10.1046/j.1365-2958.1996.364891.x. [DOI] [PubMed] [Google Scholar]
  19. Legrain M., Mazarin V., Irwin S. W., Bouchon B., Quentin-Millet M. J., Jacobs E., Schryvers A. B. Cloning and characterization of Neisseria meningitidis genes encoding the transferrin-binding proteins Tbp1 and Tbp2. Gene. 1993 Aug 16;130(1):73–80. doi: 10.1016/0378-1119(93)90348-7. [DOI] [PubMed] [Google Scholar]
  20. Lissolo L., Maitre-Wilmotte G., Dumas P., Mignon M., Danve B., Quentin-Millet M. J. Evaluation of transferrin-binding protein 2 within the transferrin-binding protein complex as a potential antigen for future meningococcal vaccines. Infect Immun. 1995 Mar;63(3):884–890. doi: 10.1128/iai.63.3.884-890.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maiden M. C. Population genetics of a transformable bacterium: the influence of horizontal genetic exchange on the biology of Neisseria meningitidis. FEMS Microbiol Lett. 1993 Sep 15;112(3):243–250. doi: 10.1111/j.1574-6968.1993.tb06457.x. [DOI] [PubMed] [Google Scholar]
  22. Mazarin V., Rokbi B., Quentin-Millet M. J. Diversity of the transferrin-binding protein Tbp2 of Neisseria meningitidis. Gene. 1995 May 26;158(1):145–146. doi: 10.1016/0378-1119(95)00151-u. [DOI] [PubMed] [Google Scholar]
  23. Poolman J. T., Abdillahi H. Outer membrane protein serosubtyping of Neisseria meningitidis. Eur J Clin Microbiol Infect Dis. 1988 Apr;7(2):291–292. doi: 10.1007/BF01963104. [DOI] [PubMed] [Google Scholar]
  24. Reeves M. W., Perkins B. A., Wenger J. D. Epidemic-associated Neisseria meningitidis detected by multilocus enzyme electrophoresis. Emerg Infect Dis. 1995 Apr-Jun;1(2):53–54. doi: 10.3201/eid0102.950203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rokbi B., Maitre-Wilmotte G., Mazarin V., Fourrichon L., Lissolo L., Quentin-Millet M. J. Variable sequences in a mosaic-like domain of meningococcal tbp2 encode immunoreactive epitopes. FEMS Microbiol Lett. 1995 Oct 15;132(3):277–283. doi: 10.1016/0378-1097(95)00326-z. [DOI] [PubMed] [Google Scholar]
  26. Rokbi B., Mazarin V., Maitre-Wilmotte G., Quentin-Millet M. J. Identification of two major families of transferrin receptors among Neisseria meningitidis strains based on antigenic and genomic features. FEMS Microbiol Lett. 1993 Jun 1;110(1):51–57. doi: 10.1111/j.1574-6968.1993.tb06294.x. [DOI] [PubMed] [Google Scholar]
  27. Rokbi B., Mignon M., Maitre-Wilmotte G., Lissolo L., Danve B., Caugant D. A., Quentin-Millet M. J. Evaluation of recombinant transferrin-binding protein B variants from Neisseria meningitidis for their ability to induce cross-reactive and bactericidal antibodies against a genetically diverse collection of serogroup B strains. Infect Immun. 1997 Jan;65(1):55–63. doi: 10.1128/iai.65.1.55-63.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sacchi C. T., Pessoa L. L., Ramos S. R., Milagres L. G., Camargo M. C., Hidalgo N. T., Melles C. E., Caugant D. A., Frasch C. E. Ongoing group B Neisseria meningitidis epidemic in São Paulo, Brazil, due to increased prevalence of a single clone of the ET-5 complex. J Clin Microbiol. 1992 Jul;30(7):1734–1738. doi: 10.1128/jcm.30.7.1734-1738.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Salvi R. J., Ahroon W., Saunders S. S., Arnold S. A. Evoked potentials: computer-automated threshold-tracking procedure using an objective detection criterion. Ear Hear. 1987 Jun;8(3):151–156. [PubMed] [Google Scholar]
  30. Schryvers A. B., Morris L. J. Identification and characterization of the transferrin receptor from Neisseria meningitidis. Mol Microbiol. 1988 Mar;2(2):281–288. doi: 10.1111/j.1365-2958.1988.tb00029.x. [DOI] [PubMed] [Google Scholar]
  31. Seiler A., Reinhardt R., Sarkari J., Caugant D. A., Achtman M. Allelic polymorphism and site-specific recombination in the opc locus of Neisseria meningitidis. Mol Microbiol. 1996 Feb;19(4):841–856. doi: 10.1046/j.1365-2958.1996.437970.x. [DOI] [PubMed] [Google Scholar]
  32. Stevenson P., Williams P., Griffiths E. Common antigenic domains in transferrin-binding protein 2 of Neisseria meningitidis, Neisseria gonorrhoeae, and Haemophilus influenzae type b. Infect Immun. 1992 Jun;60(6):2391–2396. doi: 10.1128/iai.60.6.2391-2396.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Virji M., Alexandrescu C., Ferguson D. J., Saunders J. R., Moxon E. R. Variations in the expression of pili: the effect on adherence of Neisseria meningitidis to human epithelial and endothelial cells. Mol Microbiol. 1992 May;6(10):1271–1279. doi: 10.1111/j.1365-2958.1992.tb00848.x. [DOI] [PubMed] [Google Scholar]
  35. Virji M., Makepeace K., Ferguson D. J., Achtman M., Moxon E. R. Meningococcal Opa and Opc proteins: their role in colonization and invasion of human epithelial and endothelial cells. Mol Microbiol. 1993 Nov;10(3):499–510. doi: 10.1111/j.1365-2958.1993.tb00922.x. [DOI] [PubMed] [Google Scholar]
  36. Virji M., Makepeace K., Peak I. R., Ferguson D. J., Jennings M. P., Moxon E. R. Opc- and pilus-dependent interactions of meningococci with human endothelial cells: molecular mechanisms and modulation by surface polysaccharides. Mol Microbiol. 1995 Nov;18(4):741–754. doi: 10.1111/j.1365-2958.1995.mmi_18040741.x. [DOI] [PubMed] [Google Scholar]
  37. Vonder Haar R. A., Legrain M., Kolbe H. V., Jacobs E. Characterization of a highly structured domain in Tbp2 from Neisseria meningitidis involved in binding to human transferrin. J Bacteriol. 1994 Oct;176(20):6207–6213. doi: 10.1128/jb.176.20.6207-6213.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wang J. F., Caugant D. A., Morelli G., Koumaré B., Achtman M. Antigenic and epidemiologic properties of the ET-37 complex of Neisseria meningitidis. J Infect Dis. 1993 Jun;167(6):1320–1329. doi: 10.1093/infdis/167.6.1320. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Diagnostic Laboratory Immunology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES