Skip to main content
Clinical and Diagnostic Laboratory Immunology logoLink to Clinical and Diagnostic Laboratory Immunology
. 1997 Nov;4(6):643–647. doi: 10.1128/cdli.4.6.643-647.1997

Laboratory findings in cows after experimental infection with Ehrlichia phagocytophila.

N Pusterla 1, J Huder 1, C Wolfensberger 1, U Braun 1, H Lutz 1
PMCID: PMC170633  PMID: 9384282

Abstract

The goal of this study was to assess various hematological variables in 10 cows after experimental infection with Ehrlichia phagocytophila. Blood samples were collected at regular intervals for examination of leukocytes for Ehrlichia organisms and for determination of hematological and biochemical variables. In addition, PCR amplification was performed throughout the disease period on blood and milk samples for the detection of E. phagocytophila organisms. The time of seroconversion and the duration of serum titers indicating positivity were determined by indirect immunofluorescence. For all cows, E. phagocytophila organisms were first detected microscopically in leukocytes 5 to 8 days postinfection and could be demonstrated for a period of 6 to 14 days. For all cows, the appearance of E. phagocytophila organisms in leukocytes coincided with transient erythropenia, leukopenia, and thrombocytopenia and a decrease in hematocrit and hemoglobin concentration. For five lactating cows, E. phagocytophila organisms were identified in leukocytes of milk samples during the acute phase of the disease, which, we believe, has not previously been reported. E. phagocytophila DNA was detected in blood samples by nested PCR from 1 to 2 days before to 2 to 12 days after the organisms were identified microscopically. In milk samples, E. phagocytophila DNA was detected for an average of 11 days.

Full Text

The Full Text of this article is available as a PDF (512.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson B. E., Dawson J. E., Jones D. C., Wilson K. H. Ehrlichia chaffeensis, a new species associated with human ehrlichiosis. J Clin Microbiol. 1991 Dec;29(12):2838–2842. doi: 10.1128/jcm.29.12.2838-2842.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bakken J. S., Krueth J., Wilson-Nordskog C., Tilden R. L., Asanovich K., Dumler J. S. Clinical and laboratory characteristics of human granulocytic ehrlichiosis. JAMA. 1996 Jan 17;275(3):199–205. [PubMed] [Google Scholar]
  3. Barlough J. E., Madigan J. E., DeRock E., Bigornia L. Nested polymerase chain reaction for detection of Ehrlichia equi genomic DNA in horses and ticks (Ixodes pacificus). Vet Parasitol. 1996 Jun;63(3-4):319–329. doi: 10.1016/0304-4017(95)00904-3. [DOI] [PubMed] [Google Scholar]
  4. Braun U., Hermann M., Pabst B. Haematological and biochemical findings in cattle with dilatation and torsion of the caecum. Vet Rec. 1989 Oct 7;125(15):396–398. doi: 10.1136/vr.125.15.396. [DOI] [PubMed] [Google Scholar]
  5. Buhles W. C., Jr, Huxsoll D. L., Hildebrandt P. K. Tropical canine pancytopenia: role of aplastic anaemia in the pathogenesis of severe disease. J Comp Pathol. 1975 Oct;85(4):511–521. doi: 10.1016/0021-9975(75)90118-8. [DOI] [PubMed] [Google Scholar]
  6. Campbell R. S., Rowland A. C., Scott G. R. Sequential pathology of tick-borne fever. J Comp Pathol. 1994 Oct;111(3):303–313. doi: 10.1016/s0021-9975(05)80009-x. [DOI] [PubMed] [Google Scholar]
  7. Chen S. M., Dumler J. S., Bakken J. S., Walker D. H. Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. J Clin Microbiol. 1994 Mar;32(3):589–595. doi: 10.1128/jcm.32.3.589-595.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cranwell M. P., Gibbons J. A. Tick-borne fever in dairy herd. Vet Rec. 1986 Nov 22;119(21):531–532. doi: 10.1136/vr.119.21.531. [DOI] [PubMed] [Google Scholar]
  9. Greig A., Macleod N. S., Allison C. J. Tick borne fever in association with mucosal disease and cobalt deficiency in calves. Vet Rec. 1977 Jun 25;100(26):562–564. doi: 10.1136/vr.100.26.562. [DOI] [PubMed] [Google Scholar]
  10. Kakoma I., Carson C. A., Ristic M., Stephenson E. M., Hildebrandt P. K., Huxsoll D. L. Platelet migration inhibtion as an indicator of immunologically mediated target cell injury in canine ehrlichiosis. Infect Immun. 1978 Apr;20(1):242–247. doi: 10.1128/iai.20.1.242-247.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lovering S. L., Pierce K. R., Adams L. G. Serum complement and blood platelet adhesiveness in acute canine ehrlichiosis. Am J Vet Res. 1980 Aug;41(8):1266–1271. [PubMed] [Google Scholar]
  12. Pierce K. R., Marrs G. E., Hightower D. Acute canine ehrlichiosis: platelet survival and factor 3 assay. Am J Vet Res. 1977 Nov;38(11):1821–1825. [PubMed] [Google Scholar]
  13. Purnell R. E., Young E. R., Brocklesby D. W., Hendry D. J. The haematology of experimentally-induced B divergens and E phagocytophila infections in splenectomised calves. Vet Rec. 1977 Jan 1;100(1):4–6. doi: 10.1136/vr.100.1.4. [DOI] [PubMed] [Google Scholar]
  14. Pusterla N., Steiger B., Schorno U., Braun U. Auftreten von boviner Ehrlichiose im Kanton Obwalden. Schweiz Arch Tierheilkd. 1997;139(9):392–396. [PubMed] [Google Scholar]
  15. Rikihisa Y. The tribe Ehrlichieae and ehrlichial diseases. Clin Microbiol Rev. 1991 Jul;4(3):286–308. doi: 10.1128/cmr.4.3.286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Smith R. D., Ristic M., Huxsoll D. L., Baylor R. A. Platelet kinetics in canine ehrlichiosis: evidence for increased platelet destruction as the cause of thrombocytopenia. Infect Immun. 1975 Jun;11(6):1216–1221. doi: 10.1128/iai.11.6.1216-1221.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Taylor S. M., Kenny J. the effects of tick-borne fever (Ehrlichia phagocytophilia) on the growth rate of fattening cattle. Br Vet J. 1980 Jul-Aug;136(4):364–370. doi: 10.1016/s0007-1935(17)32239-x. [DOI] [PubMed] [Google Scholar]
  18. Tuomi J. Experimental studies on bovine tick-borne fever. 1. Clinical and haematological data, some properties of the causative agent, and homologous immunity. Acta Pathol Microbiol Scand. 1967;70(3):429–445. [PubMed] [Google Scholar]
  19. Watson A. D., van Duin C. T., Knoppert N. W., Nieuwenhuijs J., Wensing T., van Miert A. S. Effect of tick-borne fever on liver and kidney function in dwarf-cross goats. Br Vet J. 1988 Nov-Dec;144(6):581–589. doi: 10.1016/0007-1935(88)90028-0. [DOI] [PubMed] [Google Scholar]
  20. Webster K. A., Mitchell G. B. Use of counter immunoelectrophoresis in detection of antibodies to tickborne fever. Res Vet Sci. 1988 Jul;45(1):28–30. [PubMed] [Google Scholar]

Articles from Clinical and Diagnostic Laboratory Immunology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES