Skip to main content
Clinical and Diagnostic Laboratory Immunology logoLink to Clinical and Diagnostic Laboratory Immunology
. 1997 Nov;4(6):653–658. doi: 10.1128/cdli.4.6.653-658.1997

Immunomagnetic selection of purified monocyte and lymphocyte populations from peripheral blood mononuclear cells following cryopreservation.

J W Sleasman 1, B H Leon 1, L F Aleixo 1, M Rojas 1, M M Goodenow 1
PMCID: PMC170635  PMID: 9384284

Abstract

Cryopreservation is a method commonly used to store human blood samples. We sought to determine if cryopreserved peripheral blood mononuclear cells (PBMC) could be separated effectively into distinct populations by using monoclonal antibodies and immunomagnetic microspheres. PBMC obtained from healthy blood donors and from human immunodeficiency virus-infected subjects were cryopreserved for as long as 18 months. Recovered cells were separated into CD14+ monocytes and CD4+ T-cell subsets by immunomagnetic selection. Flow cytometry analysis indicated >95% depletion of monocytes from PBMC following immunomagnetic selection with anti-CD14. A highly enriched population of CD4+ T cells was obtained from the CD14-depleted cell fraction by using an anti-CD4 monoclonal antibody and detachable immunomagnetic beads. The CD4+ T cells were subsequently separated into CD4+ CD45RO and CD4+ CD45RA fractions. Each fraction contained >90% enrichment for the respective subpopulation and <5% of the reciprocal subpopulation. No significant differences in cell surface expression of leukocyte markers, in efficiency of selection of PBMC subpopulations, or in mitogen-induced proliferation were detected in freshly isolated or cryopreserved cells. Efficient recovery of cryopreserved specimens means that targeted assays can be performed on selected, prospectively stored samples once clinical endpoints have been achieved.

Full Text

The Full Text of this article is available as a PDF (181.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aglietta M., Piacibello W., Stacchini A., Sanavio F., Novarino A., Grazia G., Miniero R., Neretto G., Gavosto F. Differences in the in vitro growth pattern of fresh and cryopreserved granulo-monopoietic precursors. Cryobiology. 1984 Oct;21(5):486–490. doi: 10.1016/0011-2240(84)90046-4. [DOI] [PubMed] [Google Scholar]
  2. Aleixo L. F., Goodenow M. M., Sleasman J. W. Molecular analysis of highly enriched populations of T-cell-depleted monocytes. Clin Diagn Lab Immunol. 1995 Nov;2(6):733–739. doi: 10.1128/cdli.2.6.733-739.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balachandran R., Thampatty P., Rinaldo C., Gupta P. Use of cryopreserved normal peripheral blood lymphocytes for isolation of human immunodeficiency virus from seropositive men. J Clin Microbiol. 1988 Mar;26(3):595–597. doi: 10.1128/jcm.26.3.595-597.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Broxmeyer H. E., Douglas G. W., Hangoc G., Cooper S., Bard J., English D., Arny M., Thomas L., Boyse E. A. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci U S A. 1989 May;86(10):3828–3832. doi: 10.1073/pnas.86.10.3828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gartner S., Kaplan H. S. Long-term culture of human bone marrow cells. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4756–4759. doi: 10.1073/pnas.77.8.4756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gee A. P., Lee C., Sleasman J. W., Madden M., Ugelstad J., Barrett D. J. T lymphocyte depletion of human peripheral blood and bone marrow using monoclonal antibodies and magnetic microspheres. Bone Marrow Transplant. 1987 Aug;2(2):155–163. [PubMed] [Google Scholar]
  7. Haziot A., Chen S., Ferrero E., Low M. G., Silber R., Goyert S. M. The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J Immunol. 1988 Jul 15;141(2):547–552. [PubMed] [Google Scholar]
  8. Holtrop S., Rijke-Schilder G. P., Tamboer W. P., Koene R. A., Tax W. J. Removal of monocytes from cell suspensions with anti-CD14 antibody and carbonyl-iron, using Fc gamma R-dependent accessory function as a sensitive measure of monocyte presence. J Immunol Methods. 1992 Dec 8;156(2):217–222. doi: 10.1016/0022-1759(92)90028-r. [DOI] [PubMed] [Google Scholar]
  9. Ichino Y., Ishikawa T. Effects of cryopreservation on human lymphocyte functions: comparison of programmed freezing method by a direct control system with a mechanical freezing method. J Immunol Methods. 1985 Mar 18;77(2):283–290. doi: 10.1016/0022-1759(85)90041-9. [DOI] [PubMed] [Google Scholar]
  10. Islam D., Lindberg A. A., Christensson B. Peripheral blood cell preparation influences the level of expression of leukocyte cell surface markers as assessed with quantitative multicolor flow cytometry. Cytometry. 1995 Jun 15;22(2):128–134. doi: 10.1002/cyto.990220208. [DOI] [PubMed] [Google Scholar]
  11. Lea T., Smeland E., Funderud S., Vartdal F., Davies C., Beiske K., Ugelstad J. Characterization of human mononuclear cells after positive selection with immunomagnetic particles. Scand J Immunol. 1986 Apr;23(4):509–519. doi: 10.1111/j.1365-3083.1986.tb03083.x. [DOI] [PubMed] [Google Scholar]
  12. Leivestad T., Gaudernack G., Ugelstad J., Vartdal F., Thorsby E. Isolation of pure and functionally active T4 and T8 cells by positive selection with antibody-coated monosized magnetic microspheres. Transplant Proc. 1987 Feb;19(1 Pt 1):265–267. [PubMed] [Google Scholar]
  13. McGann L. E., Walterson M. L. Cryoprotection by dimethyl sulfoxide and dimethyl sulfone. Cryobiology. 1987 Feb;24(1):11–16. doi: 10.1016/0011-2240(87)90003-4. [DOI] [PubMed] [Google Scholar]
  14. Morimoto C., Letvin N. L., Boyd A. W., Hagan M., Brown H. M., Kornacki M. M., Schlossman S. F. The isolation and characterization of the human helper inducer T cell subset. J Immunol. 1985 Jun;134(6):3762–3769. [PubMed] [Google Scholar]
  15. Nicholson J. K., Jones B. M., Cross G. D., McDougal J. S. Comparison of T and B cell analyses on fresh and aged blood. J Immunol Methods. 1984 Oct 12;73(1):29–40. doi: 10.1016/0022-1759(84)90028-0. [DOI] [PubMed] [Google Scholar]
  16. Nicol A., Nieda M., Donaldson C., Denning-Kendall P., Bradley B., Hows J. Analysis of cord blood CD34+ cells purified after cryopreservation. Exp Hematol. 1995 Dec;23(14):1589–1594. [PubMed] [Google Scholar]
  17. Prince H. E., Lee C. D. Cryopreservation and short-term storage of human lymphocytes for surface marker analysis. Comparison of three methods. J Immunol Methods. 1986 Oct 23;93(1):15–18. doi: 10.1016/0022-1759(86)90427-8. [DOI] [PubMed] [Google Scholar]
  18. Rasmussen A. M., Smeland E. B., Erikstein B. K., Caignault L., Funderud S. A new method for detachment of Dynabeads from positively selected B lymphocytes. J Immunol Methods. 1992 Feb 5;146(2):195–202. doi: 10.1016/0022-1759(92)90228-l. [DOI] [PubMed] [Google Scholar]
  19. Rubinstein P., Dobrila L., Rosenfield R. E., Adamson J. W., Migliaccio G., Migliaccio A. R., Taylor P. E., Stevens C. E. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10119–10122. doi: 10.1073/pnas.92.22.10119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schlossman S. F., Boumsell L., Gilks W., Harlan J. M., Kishimoto T., Morimoto C., Ritz J., Shaw S., Silverstein R. L., Springer T. A. CD antigens 1993. J Immunol. 1994 Jan 1;152(1):1–2. [PubMed] [Google Scholar]
  21. Simmons D. L., Tan S., Tenen D. G., Nicholson-Weller A., Seed B. Monocyte antigen CD14 is a phospholipid anchored membrane protein. Blood. 1989 Jan;73(1):284–289. [PubMed] [Google Scholar]
  22. Sleasman J. W., Aleixo L. F., Morton A., Skoda-Smith S., Goodenow M. M. CD4+ memory T cells are the predominant population of HIV-1-infected lymphocytes in neonates and children. AIDS. 1996 Nov;10(13):1477–1484. doi: 10.1097/00002030-199611000-00004. [DOI] [PubMed] [Google Scholar]
  23. Sleasman J. W., Henderson M., Barrett D. J. Con A-induced suppressor cell function depends on the activation of the CD4+CD45RA inducer T cell subpopulation. Cell Immunol. 1991 Apr 1;133(2):367–378. doi: 10.1016/0008-8749(91)90111-n. [DOI] [PubMed] [Google Scholar]
  24. Sleasman J. W., Morimoto C., Schlossman S. F., Tedder T. F. The role of functionally distinct helper T lymphocyte subpopulations in the induction of human B cell differentiation. Eur J Immunol. 1990 Jun;20(6):1357–1366. doi: 10.1002/eji.1830200623. [DOI] [PubMed] [Google Scholar]
  25. Smith S. H., Brown M. H., Rowe D., Callard R. E., Beverley P. C. Functional subsets of human helper-inducer cells defined by a new monoclonal antibody, UCHL1. Immunology. 1986 May;58(1):63–70. [PMC free article] [PubMed] [Google Scholar]
  26. Streuli M., Morimoto C., Schrieber M., Schlossman S. F., Saito H. Characterization of CD45 and CD45R monoclonal antibodies using transfected mouse cell lines that express individual human leukocyte common antigens. J Immunol. 1988 Dec 1;141(11):3910–3914. [PubMed] [Google Scholar]
  27. Tedder T. F., Clement L. T., Cooper M. D. Human lymphocyte differentiation antigens HB-10 and HB-11. I. Ontogeny of antigen expression. J Immunol. 1985 May;134(5):2983–2988. [PubMed] [Google Scholar]
  28. Venkataraman M. Effects of cryopreservation on immune responses. VIII. Enhanced secretion of interferon-gamma by frozen human peripheral blood mononuclear cells. Cryobiology. 1995 Dec;32(6):528–534. doi: 10.1006/cryo.1995.1055. [DOI] [PubMed] [Google Scholar]
  29. Venkataraman M. Effects of cryopreservation on immune responses: VI. An inexpensive method for freezing human peripheral blood mononuclear cells. J Clin Lab Immunol. 1992;37(3):133–143. [PubMed] [Google Scholar]
  30. Venkataraman M., Westerman M. P. Susceptibility of human T cells, T-cell subsets, and B cells to cryopreservation. Cryobiology. 1986 Jun;23(3):199–208. doi: 10.1016/0011-2240(86)90045-3. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Diagnostic Laboratory Immunology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES