Skip to main content
Clinical and Diagnostic Laboratory Immunology logoLink to Clinical and Diagnostic Laboratory Immunology
. 1997 Nov;4(6):705–710. doi: 10.1128/cdli.4.6.705-710.1997

Phagocytosis and oxidative-burst response of planktonic Staphylococcus epidermidis RP62A and its non-slime-producing variant in human neutrophils.

M Heinzelmann 1, D O Herzig 1, B Swain 1, M A Mercer-Jones 1, T M Bergamini 1, H C Polk Jr 1
PMCID: PMC170644  PMID: 9384293

Abstract

The ability of bacterial organisms to produce an extracellular polysaccharide matrix known as slime has been associated with increased virulence and delayed infections in various prosthetic implants. Within a biofilm, this slime may protect the embedded bacteria from host defense mechanisms, especially phagocytosis by polymorphonuclear leukocytes. To determine whether planktonic Staphylococcus epidermidis is protected in a similar way, a novel flow cytometric assay was performed, measuring ingestion and adherence during phagocytosis and the production of superoxide during oxidative burst. Hydrophobicity was determined by hydrophobic interaction chromatography. Slime-producing S. epidermidis RP62A and its phenotypic variant, non-slime-producing RP62A-NA, were compared. The results showed increased phagocytosis of RP62A at 2, 5, 10, and 30 min; increased adherence of RP62A at 30 s and 30 min; and increased superoxide production of RP62A after 2 min. Decreased hydrophobicity of RP62A over RP62A-NA was correlated with a hydrophilic slime coat. The data argue that the host aggressively combats slime-producing S. epidermidis. This biological phenomenon is potentially important during bacteremia to prevent further adhesion, accumulation, and the genesis of a bacterial biofilm on implants or tissue surfaces.

Full Text

The Full Text of this article is available as a PDF (195.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergamini T. M., Corpus R. A., Jr, Brittian K. R., Peyton J. C., Cheadle W. G. The natural history of bacterial biofilm graft infection. J Surg Res. 1994 May;56(5):393–396. doi: 10.1006/jsre.1994.1062. [DOI] [PubMed] [Google Scholar]
  2. Böyum A. A one-stage procedure for isolation of granulocytes and lymphocytes from human blood. General sedimentation properties of white blood cells in a 1g gravity field. Scand J Clin Lab Invest Suppl. 1968;97:51–76. [PubMed] [Google Scholar]
  3. CALLAGHAN R. P., COHEN S. J., STEWART G. T. Septicaemia due to colonization of Spitz-Holter valves by staphylococci. Five cases treated with methicillin. Br Med J. 1961 Mar 25;1(5229):860–863. doi: 10.1136/bmj.1.5229.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Christensen G. D., Baddour L. M., Madison B. M., Parisi J. T., Abraham S. N., Hasty D. L., Lowrance J. H., Josephs J. A., Simpson W. A. Colonial morphology of staphylococci on Memphis agar: phase variation of slime production, resistance to beta-lactam antibiotics, and virulence. J Infect Dis. 1990 Jun;161(6):1153–1169. doi: 10.1093/infdis/161.6.1153. [DOI] [PubMed] [Google Scholar]
  5. Christensen G. D., Simpson W. A., Younger J. J., Baddour L. M., Barrett F. F., Melton D. M., Beachey E. H. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol. 1985 Dec;22(6):996–1006. doi: 10.1128/jcm.22.6.996-1006.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Christensen G. D. The 'sticky' problem of Staphylococcus epidermidis sepsis. Hosp Pract (Off Ed) 1993 Sep 30;28(9A):27-36, 38. [PubMed] [Google Scholar]
  7. Costerton J. W., Cheng K. J., Geesey G. G., Ladd T. I., Nickel J. C., Dasgupta M., Marrie T. J. Bacterial biofilms in nature and disease. Annu Rev Microbiol. 1987;41:435–464. doi: 10.1146/annurev.mi.41.100187.002251. [DOI] [PubMed] [Google Scholar]
  8. Drevets D. A., Campbell P. A. Macrophage phagocytosis: use of fluorescence microscopy to distinguish between extracellular and intracellular bacteria. J Immunol Methods. 1991 Aug 28;142(1):31–38. doi: 10.1016/0022-1759(91)90289-r. [DOI] [PubMed] [Google Scholar]
  9. Gray E. D., Peters G., Verstegen M., Regelmann W. E. Effect of extracellular slime substance from Staphylococcus epidermidis on the human cellular immune response. Lancet. 1984 Feb 18;1(8373):365–367. doi: 10.1016/s0140-6736(84)90413-6. [DOI] [PubMed] [Google Scholar]
  10. Hed J. Methods for distinguishing ingested from adhering particles. Methods Enzymol. 1986;132:198–204. doi: 10.1016/s0076-6879(86)32008-1. [DOI] [PubMed] [Google Scholar]
  11. Johnson G. M., Lee D. A., Regelmann W. E., Gray E. D., Peters G., Quie P. G. Interference with granulocyte function by Staphylococcus epidermidis slime. Infect Immun. 1986 Oct;54(1):13–20. doi: 10.1128/iai.54.1.13-20.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kristinsson K. G., Hastings J. G., Spencer R. C. The role of extracellular slime in opsonophagocytosis of Staphylococcus epidermidis. J Med Microbiol. 1988 Nov;27(3):207–213. doi: 10.1099/00222615-27-3-207. [DOI] [PubMed] [Google Scholar]
  13. Martin E., Bhakdi S. Flow cytometric assay for quantifying opsonophagocytosis and killing of Staphylococcus aureus by peripheral blood leukocytes. J Clin Microbiol. 1992 Sep;30(9):2246–2255. doi: 10.1128/jcm.30.9.2246-2255.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Muller E., Hübner J., Gutierrez N., Takeda S., Goldmann D. A., Pier G. B. Isolation and characterization of transposon mutants of Staphylococcus epidermidis deficient in capsular polysaccharide/adhesin and slime. Infect Immun. 1993 Feb;61(2):551–558. doi: 10.1128/iai.61.2.551-558.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Perticarari S., Presani G., Banfi E. A new flow cytometric assay for the evaluation of phagocytosis and the oxidative burst in whole blood. J Immunol Methods. 1994 Mar 29;170(1):117–124. doi: 10.1016/0022-1759(94)90251-8. [DOI] [PubMed] [Google Scholar]
  16. Peters G., Locci R., Pulverer G. Adherence and growth of coagulase-negative staphylococci on surfaces of intravenous catheters. J Infect Dis. 1982 Oct;146(4):479–482. doi: 10.1093/infdis/146.4.479. [DOI] [PubMed] [Google Scholar]
  17. Peters G., Pulverer G. Pathogenesis and management of Staphylococcus epidermidis 'plastic' foreign body infections. J Antimicrob Chemother. 1984 Dec;14 (Suppl 500):67–71. doi: 10.1093/jac/14.suppl_d.67. [DOI] [PubMed] [Google Scholar]
  18. Riber U., Espersen F., Skinhøj P., Kharazmi A. Induction of oxidative burst response in human neutrophils by adherent staphylococci. Comparison between Staphylococcus epidermidis and Staphylococcus aureus. APMIS. 1993 Jan;101(1):55–60. doi: 10.1111/j.1699-0463.1993.tb00081.x. [DOI] [PubMed] [Google Scholar]
  19. Rodgers J., Phillips F., Olliff C. The effects of extracellular slime from Staphylococcus epidermidis on phagocytic ingestion and killing. FEMS Immunol Med Microbiol. 1994 Aug;9(2):109–115. doi: 10.1111/j.1574-695X.1994.tb00481.x. [DOI] [PubMed] [Google Scholar]
  20. Rothe G., Valet G. Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2',7'-dichlorofluorescin. J Leukoc Biol. 1990 May;47(5):440–448. [PubMed] [Google Scholar]
  21. SCHIMKE R. T., BLACK P. H., MARK V. H., SWARTZ M. N. Indolent Staphylococcus albus or aureus bacteremia after ventriculoatriostomy. Role of foreign body in its initiation and perpetuation. N Engl J Med. 1961 Feb 9;264:264–270. doi: 10.1056/NEJM196102092640602. [DOI] [PubMed] [Google Scholar]
  22. Smyth C. J., Jonsson P., Olsson E., Soderlind O., Rosengren J., Hjertén S., Wadström T. Differences in hydrophobic surface characteristics of porcine enteropathogenic Escherichia coli with or without K88 antigen as revealed by hydrophobic interaction chromatography. Infect Immun. 1978 Nov;22(2):462–472. doi: 10.1128/iai.22.2.462-472.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Steinkamp J. A., Wilson J. S., Saunders G. C., Stewart C. C. Phagocytosis: flow cytometric quantitation with fluorescent microspheres. Science. 1982 Jan 1;215(4528):64–66. doi: 10.1126/science.7053559. [DOI] [PubMed] [Google Scholar]
  24. Stjernström I., Magnusson K. E., Stendahl O., Tagesson C. Liability to hydrophobic and charge interaction of smooth Salmonella typhimurium 395 MS sensitized with anti-MS immunoglobulin G and complement. Infect Immun. 1977 Nov;18(2):261–265. doi: 10.1128/iai.18.2.261-265.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Szöllösi J., Trón L., Damjanovich S., Helliwell S. H., Arndt-Jovin D., Jovin T. M. Fluorescence energy transfer measurements on cell surfaces: a critical comparison of steady-state fluorimetric and flow cytometric methods. Cytometry. 1984 Mar;5(2):210–216. doi: 10.1002/cyto.990050216. [DOI] [PubMed] [Google Scholar]
  26. Towne J. B., Seabrook G. R., Bandyk D., Freischlag J. A., Edmiston C. E. In situ replacement of arterial prosthesis infected by bacterial biofilms: long-term follow-up. J Vasc Surg. 1994 Feb;19(2):226–235. doi: 10.1016/s0741-5214(94)70098-2. [DOI] [PubMed] [Google Scholar]
  27. White-Owen C., Alexander J. W., Sramkoski R. M., Babcock G. F. Rapid whole-blood microassay using flow cytometry for measuring neutrophil phagocytosis. J Clin Microbiol. 1992 Aug;30(8):2071–2076. doi: 10.1128/jcm.30.8.2071-2076.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yasuda H., Ajiki Y., Aoyama J., Yokota T. Interaction between human polymorphonuclear leucocytes and bacteria released from in-vitro bacterial biofilm models. J Med Microbiol. 1994 Nov;41(5):359–367. doi: 10.1099/00222615-41-5-359. [DOI] [PubMed] [Google Scholar]
  29. van Oss C. J. Phagocytosis as a surface phenomenon. Annu Rev Microbiol. 1978;32:19–39. doi: 10.1146/annurev.mi.32.100178.000315. [DOI] [PubMed] [Google Scholar]

Articles from Clinical and Diagnostic Laboratory Immunology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES