Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1977 Feb;33(2):221–226. doi: 10.1128/aem.33.2.221-226.1977

Fatty acid fingerprints of Streptococcus mutans NCTC 10832 grown at various temperatures.

D B Drucker, F J Veazey
PMCID: PMC170668  PMID: 848945

Abstract

Fatty acid fingerprints were determined gas chromatographically for Strepcococcus mutans NCTC 1082 which had been grown in batch brain heart infusion at a series of nine temperatures ranging from 29.0 to 40.0 degrees C. The major acids at all temperatures were n-palmitic and octadecenoic acids. Other acids detected at all temperatures included n-myristic, palmitoleic, n-stearic, and eicosenoic acids. An increase in temperature resulted in a decrease in the proportion of unsaturated to saturated fatty acids, indicating the importance of accurate temperature control in such gas-liquid chromatographic, chemotaxonomic studies.

Full text

PDF
221

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABEL K., DESCHMERTZING H., PETERSON J. I. CLASSIFICATION OF MICROORGANISMS BY ANALYSIS OF CHEMICAL COMPOSITION. I. FEASIBILITY OF UTILIZING GAS CHROMATOGRAPHY. J Bacteriol. 1963 May;85:1039–1044. doi: 10.1128/jb.85.5.1039-1044.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amstein C. F., Hartman P. A. Differentiation of some enterococci by gas chromatography. J Bacteriol. 1973 Jan;113(1):38–41. doi: 10.1128/jb.113.1.38-41.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brooks J. B., Weaver R. E., Tatum H. W., Billingsley S. A. Differentiation between Pseudomonas testosteroni and P. acidovorans by gas chromatography. Can J Microbiol. 1972 Sep;18(9):1477–1482. doi: 10.1139/m72-226. [DOI] [PubMed] [Google Scholar]
  4. Drucker D. B., Green R. M., Blackmore D. K. Caries induced in rats in three weeks by a streptococcus isolated from man. J Dent Res. 1972 Sep-Oct;51(5):1510–1510. doi: 10.1177/00220345720510055201. [DOI] [PubMed] [Google Scholar]
  5. Drucker D. B., Griffit C. J., Melville T. H. Fatty acid fingerprints of Streptococcus mutans grown in a chemostat. Microbios. 1973;7(25):17–23. [PubMed] [Google Scholar]
  6. Drucker D. B., Griffith C. J., Melville T. H. The influence of vitamin and magnesium limitations on fatty-acid fingerprints of chemostat grown Streptococcus sp. SS. Microbios. 1974 Apr;10(38):183–185. [PubMed] [Google Scholar]
  7. Drucker D. B., Owen I. Chemotaxonomic fatty acid fingerprints of bacteria grown with, and without, aeration. Can J Microbiol. 1973 Feb;19(2):247–250. doi: 10.1139/m73-037. [DOI] [PubMed] [Google Scholar]
  8. Farshtchi D., McClung N. M. Effect of substrate on fatty acid production in Nocardia asteroides. Can J Microbiol. 1970 Apr;16(4):213–217. doi: 10.1139/m70-039. [DOI] [PubMed] [Google Scholar]
  9. Jantzen E., Bergan T., Bovre K. Gas chromatography of bacterial whole cell methanolysates; VI. Fatty acid composition of strains within Micrococcaceae;. Acta Pathol Microbiol Scand B Microbiol Immunol. 1974 Dec;82(6):785–798. [PubMed] [Google Scholar]
  10. KATES M., ADAMS G. A., MARTIN S. M. LIPIDS OF SERRATIA MARCESCENS. Can J Biochem. 1964 Apr;42:461–479. doi: 10.1139/o64-054. [DOI] [PubMed] [Google Scholar]
  11. KATES M., HAGEN P. O. INFLUENCE OF TEMPERATURE ON FATTY ACID COMPOSITION OF PSYCHROPHILIC AND MESOPHILIC SERRATIA SPECIES. Can J Biochem. 1964 Apr;42:481–488. doi: 10.1139/o64-055. [DOI] [PubMed] [Google Scholar]
  12. Kaneda T. Fatty acids in the genus Bacillus. I. Iso- and anteiso-fatty acids as characteristic constituents of lipids in 10 species. J Bacteriol. 1967 Mar;93(3):894–903. doi: 10.1128/jb.93.3.894-903.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kenyon C. N. Fatty acid composition of unicellular strains of blue-green algae. J Bacteriol. 1972 Feb;109(2):827–834. doi: 10.1128/jb.109.2.827-834.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Levanon A., Klibansky Y., Kohn A. Detection of encephalomyocarditis virus infection in animal cells by gas liquid chromatography. Experientia. 1973 Oct 15;29(10):1305–1307. doi: 10.1007/BF01935132. [DOI] [PubMed] [Google Scholar]
  15. Marr A. G., Ingraham J. L. EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI. J Bacteriol. 1962 Dec;84(6):1260–1267. doi: 10.1128/jb.84.6.1260-1267.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moss C. W., Lewis V. J. Characterization of clostridia by gas chromatography. I. Differentiation of species by cellular fatty acids. Appl Microbiol. 1967 Mar;15(2):390–397. doi: 10.1128/am.15.2.390-397.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Thoen C. O., Karlson A. G., Ellefson R. D. Differentiation between Mycobacterium kansasii and Mycobacterium marinum by gas-liquid chromatographic analysis of cellular fatty acids. Appl Microbiol. 1972 Dec;24(6):1009–1010. doi: 10.1128/am.24.6.1009-1010.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES