Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1977 Feb;33(2):341–344. doi: 10.1128/aem.33.2.341-344.1977

Effect of beef broth protein on the thermal inactivation of staphylococcal enterotoxin B1.

I C Lee, K E Stevenson, L G Harmon
PMCID: PMC170688  PMID: 403860

Abstract

Enterotoxin B produced by Staphylococus aureus 243 in brain heart infusion broth was concentrated by dialysis against 40% polyethylene glycol (20 M), partially purified on a Sephadex G-100 column and heated at 110 degrees C in thermal death time cans. Various heating menstrua included 0.04 M Veronal buffer (pH 7.4), beef broth, and fractions of beef broth obtained by ultrafiltration or precipitation with ammonium sulfate. The toxin was assayed serologically using the microslide gel double-diffusion method. The time requiring for 90% inactivation at 110 degrees C (D110 value) obtained in buffer and in beef broth was 18 and 60 min, respectively. When the concentration of beef broth was increased fivefold, the D110 increased to 78 min. The apparent protective effect or protein was further investigated using beef broth protein obtained by precipitation with (NH4)2SO4. The D110 values were 51 and 70 min when the protein concentration in the heating menstruum was 3.8 and 7.7 mg/ml, respectively. However, when the beef broth protein was dialyzed against buffer before use as a heating menstrum, the D110 was only 39 or 41 min at comparable protein concentrations. Results indicated a dialyzable factor, whose protective effect was partially destroyed by trypsin and chymotrypsin but did not by disodium ethylenediaminetetraacetate, was involved in the protection of enterotoxin B during heating.

Full text

PDF
341

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CASMAN E. P., BENNETT R. W. DETECTION OF STAPHYLOCOCCAL ENTEROTOXIN IN FOOD. Appl Microbiol. 1965 Mar;13:181–189. doi: 10.1128/am.13.2.181-189.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Denny C. B., Humber J. Y., Bohrer C. W. Effect of toxin concentration on the heat inactivation of staphylococcal enterotoxin A in beef bouillon and in phosphate buffer. Appl Microbiol. 1971 Jun;21(6):1064–1066. doi: 10.1128/am.21.6.1064-1066.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hilker J. S., Heilman W. R., Tan P. L., Denny C. B., Bohrer C. W. Heat inactivation of enterotoxin A from Staphylococcus aureus in veronal buffer. Appl Microbiol. 1968 Feb;16(2):308–310. doi: 10.1128/am.16.2.308-310.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Humber J. Y., Denny C. B., Bohrer C. W. Influence of pH on the heat inactivation of staphylococcal enterotoxin A as determined by monkey feeding and serological assay. Appl Microbiol. 1975 Nov;30(5):755–758. doi: 10.1128/am.30.5.755-758.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Read R. B., Jr, Bradshaw J. G. Staphylococcal enterotoxin B thermal inactivation in milk. J Dairy Sci. 1966 Feb;49(2):202–203. doi: 10.3168/jds.S0022-0302(66)87827-X. [DOI] [PubMed] [Google Scholar]
  7. Read R. B., Jr, Bradshaw J. G. Thermal inactivation of staphylococcal enterotoxin B in veronal buffer. Appl Microbiol. 1966 Jan;14(1):130–132. doi: 10.1128/am.14.1.130-132.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Satterlee L. D., Kraft A. A. Effect of meat and isolated meat proteins on the thermal inactivation of staphylococcal enterotoxin B. Appl Microbiol. 1969 Jun;17(6):906–909. doi: 10.1128/am.17.6.906-909.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES