Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1977 Feb;33(2):363–369. doi: 10.1128/aem.33.2.363-369.1977

Tetrahydrofolate and other growth requirements of certain strains of Ruminococcus flavefaciens.

L L Slyter, J M Weaver
PMCID: PMC170692  PMID: 557955

Abstract

Two strains of Ruminococcus flavefaciens were studied. Each grew in a chemically defined minimal medium containing: minerals; ammonium sulfate as a nitrogen source; amino acids as a nitrogen source, a growth promotant(s) or as both; cellobiose as an energy and carbon source; isobutyric acid, isovaleric acid, carbonic acid, and bicarbonate as additional carbon sources; and biotin, thiamine, and tetrahydrofolic acid as vitamins. Tetrahydrofolic acid (5 ng/ml) served as a replacement for rumen fluid that was required in previous media tested for the growth of these bacteria. The present bacteria differ from many of the ruminococci previously studied in that they do not require either p-amino-benzoic acid or folic acid but do require tetrahydrofolic acid for maximum growth. Dihydrofolic acid and 5-methyltetrahydrofolic acid can substitute for tetrahydrofolic acid in minimal chemically defined medium. Thus, there must be extensive metabolic interaction between the microbes inhabitating the rumen, because the R. flavefaciens isolated had complex requirements for growth and yet was among the predominant bacteria in the rumen of cattle fed a simple vitamin B-deficient, nonprotein nitrogen, high-fiber, purified diet.

Full text

PDF
363

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLISON M. J., BRYANT M. P., DOETSCH R. N. Conversion of isovalerate to leucine by Ruminococcus flavefaciens. Arch Biochem Biophys. 1959 Sep;84:245–247. doi: 10.1016/0003-9861(59)90575-2. [DOI] [PubMed] [Google Scholar]
  2. ALLISON M. J., BRYANT M. P., DOETSCH R. N. Studies on the metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. I. Incorporation of isovalerate into leucine. J Bacteriol. 1962 Mar;83:523–532. doi: 10.1128/jb.83.3.523-532.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. ALLISON M. J., BRYANT M. P., DOETSCH R. N. Volatile fatty acid growth factor for cellulolytic cocci of bovine rumen. Science. 1958 Aug 29;128(3322):474–475. doi: 10.1126/science.128.3322.474. [DOI] [PubMed] [Google Scholar]
  4. ALLISON M. J., BRYANT M. P., KATZ I., KEENEY M. Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branched-chain fatty acids and aldehydes. J Bacteriol. 1962 May;83:1084–1093. doi: 10.1128/jb.83.5.1084-1093.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. AYERS W. A. Nutrition and physiology of Ruminococcus flavefaciens. J Bacteriol. 1958 Nov;76(5):504–509. doi: 10.1128/jb.76.5.504-509.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BRYANT M. P., ROBINSON I. M. Some nutritional characteristics of predominant culturable ruminal bacteria. J Bacteriol. 1962 Oct;84:605–614. doi: 10.1128/jb.84.4.605-614.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. BRYANT M. P., SMALL N., BOUMA C., ROBINSON I. M. Characteristics of ruminal anaerobic celluloytic cocci and Cillobacterium cellulosolvens n. sp. J Bacteriol. 1958 Nov;76(5):529–537. doi: 10.1128/jb.76.5.529-537.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bryant M. P. Nutritional requirements of the predominant rumen cellulolytic bacteria. Fed Proc. 1973 Jul;32(7):1809–1813. [PubMed] [Google Scholar]
  9. Bryant M. P., Robinson I. M. Some Nutritional Requirements of the Genus Ruminococcus. Appl Microbiol. 1961 Mar;9(2):91–95. doi: 10.1128/am.9.2.91-95.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bryant M. P., Robinson I. M. Studies on the Nitrogen Requirements of Some Ruminal Cellulolytic Bacteria. Appl Microbiol. 1961 Mar;9(2):96–103. doi: 10.1128/am.9.2.96-103.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Caldwell D. R., Keeney M., Van Soest P. J. Effects of carbon dioxide on growth and maltose fermentation by Bacteroides amylophilus. J Bacteriol. 1969 May;98(2):668–676. doi: 10.1128/jb.98.2.668-676.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dehority B. A., Scott H. W., Kowaluk P. Volatile fatty acid requirements of cellulolytic rumen bacteria. J Bacteriol. 1967 Sep;94(3):537–543. doi: 10.1128/jb.94.3.537-543.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Herbeck J. L., Bryant M. P. Nutritional features of the intestinal anaerobe Ruminococcus bromii. Appl Microbiol. 1974 Dec;28(6):1018–1022. doi: 10.1128/am.28.6.1018-1022.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. OLTJEN R. R., SIRNY R. J., TILLMAN A. D. Effects of B vitamins and mineral mixtures upon growth and rumen function of ruminants fed purified diets. J Nutr. 1962 Jul;77:269–277. doi: 10.1093/jn/77.3.269. [DOI] [PubMed] [Google Scholar]
  15. Orskov E. R., Oltjen R. R. Influence of carbohydrate and nitrogen sources on the rumen volatile fatty acids and ethanol of cattle fed purified diets. J Nutr. 1967 Oct;93(2):222–228. doi: 10.1093/jn/93.2.222. [DOI] [PubMed] [Google Scholar]
  16. Slyter L. L., Weaver J. M. Growth factor requirements of Ruminococcus flavefaciens isolated from the rumen of cattle fed purified diets. Appl Microbiol. 1969 May;17(5):737–741. doi: 10.1128/am.17.5.737-741.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES