Abstract
Thiobacillus ferroodixans cells released varying amounts of iron, phosphate, sugar, ribonucleic acid, deoxyribonucleic acid, and substances that absorbed light at both 260 and 280 nm, when exposed to 10(-2) to 10(-1) M concentrations of these organic acids: propionic, butyric, valeric, hexanoic, and oxalacetic. These acids also retarded iron oxidation by the cells. Electron microscope observation of cells after exposure to the organic acids showed varying degrees of cell envelope disruption, suggesting that the mode of inhibition of autotrophic iron oxidation in the cell involves interference with the function of the cell envelope, possibly the cell membrane.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adair F. W. Membrane-associated sulfur oxidation by the autotroph Thiobacillus thiooxidans. J Bacteriol. 1966 Oct;92(4):899–904. doi: 10.1128/jb.92.4.899-904.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Apel W. A., Dugan P. R., Filppi J. A., Rheins M. S. Detection of Thiobacillus ferrooxidans in acid mine environments by indirect fluorescent antibody staining. Appl Environ Microbiol. 1976 Jul;32(1):159–165. doi: 10.1128/aem.32.1.159-165.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRADLEY D. E., WILLIAMS D. J. An electron microscope study of the spores of some species of the genus Bacillus using carbon replicas. J Gen Microbiol. 1957 Aug;17(1):75–79. doi: 10.1099/00221287-17-1-75. [DOI] [PubMed] [Google Scholar]
- Borichewski R. M. Keto acids as growth-limiting factors in autotrophic growth of Thiobacillus thiooxidans. J Bacteriol. 1967 Feb;93(2):597–599. doi: 10.1128/jb.93.2.597-599.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bounds H. C., Colmer A. R. Comparison of the kinetics of thiosulfate oxidation by three iron-sulfur oxidizers. Can J Microbiol. 1972 Jun;18(6):735–740. doi: 10.1139/m72-117. [DOI] [PubMed] [Google Scholar]
- Butler R. G., Umbreit W. W. Reduced nicotinamide adenine dinucleotide oxidase and alpha-ketoglutaric dehydrogenase activity by Thiobacillus thiooxidans. J Bacteriol. 1969 Feb;97(2):966–967. doi: 10.1128/jb.97.2.966-967.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Din G. A., Suzuki I., Lees H. Ferrous iron oxidation by Ferrobacillus ferrooxidans. Purification and properties of Fe++-cytochrome c reductase. Can J Biochem. 1967 Oct;45(10):1523–1546. doi: 10.1139/o67-183. [DOI] [PubMed] [Google Scholar]
- Din G. A., Suzuki I. Mechanism of Fe++-cytochrome c reductase of Ferrobacillus ferrooxidans. Can J Biochem. 1967 Oct;45(10):1547–1556. doi: 10.1139/o67-184. [DOI] [PubMed] [Google Scholar]
- Dugan P. R., MacMillan C. B., Pfister R. M. Aerobic heterotrophic bacteria indigenous to pH 2.8 acid mine water: predominant slime-producing bacteria in acid streamers. J Bacteriol. 1970 Mar;101(3):982–988. doi: 10.1128/jb.101.3.982-988.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedman B. A., Dugan P. R., Pfister R. M., Remsen C. C. Fine structure and composition of the zoogloeal matrix surrounding Zoogloea ramigera. J Bacteriol. 1968 Dec;96(6):2144–2153. doi: 10.1128/jb.96.6.2144-2153.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guay R., Silver M. Thiobacillus acidophilus sp. nov.; isolation and some physiological characteristics. Can J Microbiol. 1975 Mar;21(3):281–288. doi: 10.1139/m75-040. [DOI] [PubMed] [Google Scholar]
- Kelly D. P. Autotrophy: concepts of lithotrophic bacteria and their organic metabolism. Annu Rev Microbiol. 1971;25:177–210. doi: 10.1146/annurev.mi.25.100171.001141. [DOI] [PubMed] [Google Scholar]
- Korczynski M. S., Agate A. D., Lundgren D. G. Phospholipids from the chemoautotroph Ferrobacillus ferrooxidans. Biochem Biophys Res Commun. 1967 Nov 30;29(4):457–462. doi: 10.1016/0006-291x(67)90505-0. [DOI] [PubMed] [Google Scholar]
- Margalith P., Silver M., Lundgren D. G. Sulfur oxidation by the iron bacterium Ferrobacillus ferrooxidans. J Bacteriol. 1966 Dec;92(6):1706–1709. doi: 10.1128/jb.92.6.1706-1709.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peck H. D., Jr Energy-coupling mechanisms in chemolithotrophic bacteria. Annu Rev Microbiol. 1968;22:489–518. doi: 10.1146/annurev.mi.22.100168.002421. [DOI] [PubMed] [Google Scholar]
- Remsen C., Lundgren D. G. Electron microscopy of the cell envelope of Ferrobacillus ferrooxidans prepared by freeze-etching and chemical fixation techniques. J Bacteriol. 1966 Dec;92(6):1765–1771. doi: 10.1128/jb.92.6.1765-1771.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STIENECKER C. D., RHEINS M. S. A micro-modification of the anthrone test for serum samples of limited quantity. Am J Med Technol. 1959 Nov-Dec;25:377–380. [PubMed] [Google Scholar]
- Schnaitman C. A., Korczynski M. S., Lundgren D. G. Kinetic studies of iron oxidation by whole cells of Ferrobacillus ferrooxidans. J Bacteriol. 1969 Aug;99(2):552–557. doi: 10.1128/jb.99.2.552-557.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shafia F., Brinson K. R., Heinzman M. W., Brady J. M. Transition of chemolithotroph Ferrobacillus ferrooxidans to obligate organotrophy and metabolic capabilities of glucose-grown cells. J Bacteriol. 1972 Jul;111(1):56–65. doi: 10.1128/jb.111.1.56-65.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shafia F., Wilkinson R. F., Jr Growth of Ferrobacillus ferrooxidans on organic matter. J Bacteriol. 1969 Jan;97(1):256–260. doi: 10.1128/jb.97.1.256-260.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slodki M. E., Wickerham L. J., Bandoni R. J. Extracellular heteropolysaccharides from Cryptococcus and Tremella. A possible taxonomic relationship. Can J Microbiol. 1966 Jun;12(3):489–494. doi: 10.1139/m66-071. [DOI] [PubMed] [Google Scholar]
- Smith A. J., London J., Stanier R. Y. Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J Bacteriol. 1967 Oct;94(4):972–983. doi: 10.1128/jb.94.4.972-983.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabita R., Lundgren D. G. Heterotrophic metabolism of the chemolithotroph Thiobacillus ferrooxidans. J Bacteriol. 1971 Oct;108(1):334–342. doi: 10.1128/jb.108.1.334-342.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabita R., Lundgren D. G. Utilization of glucose and the effect of organic compounds on the chemolithotroph Thiobacillus ferrooxidans. J Bacteriol. 1971 Oct;108(1):328–333. doi: 10.1128/jb.108.1.328-333.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tuovinen P. H., Kelley B. C., Nicholas D. J. Enzymic comparisons of the inorganic sulfur metabolism in autotrophic and heterotrophic Thiobacillus ferrooxidans. Can J Microbiol. 1976 Jan;22(1):109–113. doi: 10.1139/m76-016. [DOI] [PubMed] [Google Scholar]
- Tuttle J. H., Dugan P. R. Inhibition of growth, iron, and sulfur oxidation in Thiobacillus ferrooxidans by simple organic compounds. Can J Microbiol. 1976 May;22(5):719–730. doi: 10.1139/m76-105. [DOI] [PubMed] [Google Scholar]
- Tuttle J. H., Randles C. I., Dugan P. R. Activity of microorganisms in acid mine water. I. Influence of acid water on aerobic heterotrophs of a normal stream. J Bacteriol. 1968 May;95(5):1495–1503. doi: 10.1128/jb.95.5.1495-1503.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang W. S., Korczynski M. S., Lundgren D. G. Cell envelope of an iron-oxidizing bacterium: studies of lipopolysaccharide and peptidoglycan. J Bacteriol. 1970 Oct;104(1):556–565. doi: 10.1128/jb.104.1.556-565.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang W. S., Lundgren D. G. Peptidoglycan of a chemolithotrophic bacterium, Ferrobacillus ferrooxidans. J Bacteriol. 1968 May;95(5):1851–1856. doi: 10.1128/jb.95.5.1851-1856.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yates M. G., Nason A. Enhancing effect of nucleic acids and their derivatives in the reduction of cytochrome c by ferrous ions. J Biol Chem. 1966 Nov 10;241(21):4861–4871. [PubMed] [Google Scholar]








