Abstract
A comparison of the N2 fixers in the tall Spartina alterniflora and short S. alterniflora marsh soils was investigated. Zero-order kinetics and first-order kinetics of acetylene reduction were used to describe the activity of the N2 fixers in marsh soil slurries. It was found that the Vmax values were approximately 10 times greater for the N2 fixers in the tall Spartina than in the short Spartina marsh when raffinose was used as the energy source. In addition, the (Ks + Sn) values were approximately 4 to 15 times lower for the N2 fixers in the tall Spartina than in short Spartina marsh. First-order kinetics of nitrogen fixation for several substrates indicate that the N2 fixers in the tall Spartina marsh were two to seven times more active than those in the short Spartina marsh. Ammonium chloride (25 μg/ml) did not inhibit nitrogen fixation in the tall Spartina marsh, but there was a 50% inhibition in nitrogen fixation in the short Spartina marsh. On the other hand, sodium nitrate inhibited nitrogen fixation almost 100% at 25 μg/ml in both soil environments. Amino nitrogen (25 to 100 μg/ml) had little or no effect on nitrogen fixation. The results indicate that the N2 fixers in the tall Spartina marsh were physiologically more responsive to nutrient addition than those in the short Spartina marsh. This difference in the two populations may be related to the difference in daily tidal influence in the respective areas and thus provide another explanation for the enhanced S. alterniflora production in the creek bank soil system.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Marsho T. V., Burchard R. P., Fleming R. Nitrogen fixation in the Rhode River estuary of Chesapeake Bay. Can J Microbiol. 1975 Sep;21(9):1348–1356. doi: 10.1139/m75-202. [DOI] [PubMed] [Google Scholar]
- Stewart W. D., Fitzgerald G. P., Burris R. H. In situ studies on N2 fixation using the acetylene reduction technique. Proc Natl Acad Sci U S A. 1967 Nov;58(5):2071–2078. doi: 10.1073/pnas.58.5.2071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiebe W. J., Bancroft K. Use of the adenylate energy charge ratio to measure growth state of natural microbial communities. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2112–2115. doi: 10.1073/pnas.72.6.2112. [DOI] [PMC free article] [PubMed] [Google Scholar]
