Abstract
Nitrogenase activity was measured by the C2H2 reduction method in large soil cores (29 cm in diameter by 20 cm in depth) of maize (Zea mays) and sorghum (Sorghum vulgare). The activity was compared to that obtained by a method in which the roots were removed from the soil and assayed for nitrogenase activity after an overnight preincubation in 1% O2. In a total of six experiments and 28 soil cores, the nitrogenase activity of the cores was an average of 14 times less than the activity of roots removed from the same cores and preincubated. Nitrogenase activity in the cores was very low and extrapolated to an average nitrogen fixation rate of 2.8 g of N/hectare per day. It was shown that inadequate gas exchange was not a reason for the lower activity in the soil cores, and the core method gave satisfactory results for nitrogenase activity of soybeans (Glycine max) and Paspalum notatum.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barber L. E., Tjepkema J. D., Russell S. A., Evans H. J. Acetylene reduction (nitrogen fixation) associated with corn inoculated with Spirillum. Appl Environ Microbiol. 1976 Jul;32(1):108–113. doi: 10.1128/aem.32.1.108-113.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okon Y., Albrecht S. L., Burris R. H. Methods for Growing Spirillum lipoferum and for Counting It in Pure Culture and in Association with Plants. Appl Environ Microbiol. 1977 Jan;33(1):85–88. doi: 10.1128/aem.33.1.85-88.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Von Bülow J. F., Döbereiner J. Potential for nitrogen fixation in maize genotypes in Brazil. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2389–2393. doi: 10.1073/pnas.72.6.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]