Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1977 Apr;33(4):777–783. doi: 10.1128/aem.33.4.777-783.1977

Muramic acid as a measure of microbial biomass in estuarine and marine samples.

J D King, D C White
PMCID: PMC170766  PMID: 869528

Abstract

Muramic acid, a component of the muramyl peptide found only in the cell walls of bacteria and blue-green algae, furnishes a measure of detrital or sedimentary procaryotic biomass. A reproducible assay involving acid hydrolysis, preparative thin-layer chromatographic purification, and colorimetric analysis of lactate released from muramic acid by alkaline hydrolysis is described. Comparison of semitropical estuarine detritus, estuarine muds, and sediments from anaerobic Black Sea cores showed muramic acid levels of 100 to 700 microng/g (dry weight), 34 microng/g, and 1.5 to 14.9 microng/g, respectively. Enzymatic assays of lactate from muramic acid gave results 10- to 20-fold higher. Radioactive pulse-labeling studies showed that [14C]acetate is rapidly incorporated into muramic acid by the detrital microflora. Subsequent loss of 14C, accompanied by nearly constant levels of total muramic acid, indicated active metabolism in procaryotic cell walls.

Full text

PDF
777

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BISHOP N. I. The influence of the herbicide, DCMU, on the oxygen-evolving system of photosynthesis. Biochim Biophys Acta. 1958 Jan;27(1):205–206. doi: 10.1016/0006-3002(58)90313-5. [DOI] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Boothby D., Daneo-Moore L., Higgins M. L., Coyette J., Shockman G. D. Turnover of bacterial cell wall peptidoglycans. J Biol Chem. 1973 Mar 25;248(6):2161–2169. [PubMed] [Google Scholar]
  4. Brock T. D. Microbial growth rates in nature. Bacteriol Rev. 1971 Mar;35(1):39–58. doi: 10.1128/br.35.1.39-58.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chaloupka J., Krecková P. Turnover of mucopeptide during the life cycle of Bacillus megaterium. Folia Microbiol (Praha) 1971;16(5):372–382. doi: 10.1007/BF02875757. [DOI] [PubMed] [Google Scholar]
  6. Chaloupka J., Strnadová M. Turnover of murein in a diaminopimelic acid dependent mutant of Escherichia coli. Folia Microbiol (Praha) 1972;17(6):446–455. doi: 10.1007/BF02872729. [DOI] [PubMed] [Google Scholar]
  7. Dickens B. F., Ingram L. O. Peptidoglycan synthesis and turnover in cell division mutants of Agmenellum. J Bacteriol. 1976 Jul;127(1):334–340. doi: 10.1128/jb.127.1.334-340.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FRIEDLAND I. M., DIETRICH L. S. A rapid enzymic determination of L-lactic acid. Anal Biochem. 1961 Aug;2:390–392. doi: 10.1016/0003-2697(61)90014-8. [DOI] [PubMed] [Google Scholar]
  9. Goldenbaum P. E., Keyser P. D., White D. C. Role of vitamin K2 in the organization and function of Staphylococcus aureua membranes. J Bacteriol. 1975 Feb;121(2):442–449. doi: 10.1128/jb.121.2.442-449.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HOCHELLA N. J., WEINHOUSE S. AUTOMATED LACTIC ACID DETERMINATION IN SERUM AND TISSUE EXTRACTS. Anal Biochem. 1965 Feb;10:304–317. doi: 10.1016/0003-2697(65)90271-x. [DOI] [PubMed] [Google Scholar]
  11. Hadzija O. A simple method for the quantitative determination of muramic acid. Anal Biochem. 1974 Aug;60(2):512–517. doi: 10.1016/0003-2697(74)90261-9. [DOI] [PubMed] [Google Scholar]
  12. Hebeler B. H., Young F. E. Chemical composition and turnover of peptidoglycan in Neisseria gonorrhoeae. J Bacteriol. 1976 Jun;126(3):1180–1185. doi: 10.1128/jb.126.3.1180-1185.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mauck J., Chan L., Glaser L. Turnover of the cell wall of Gram-positive bacteria. J Biol Chem. 1971 Mar 25;246(6):1820–1827. [PubMed] [Google Scholar]
  14. Mauck J., Glaser L. Turnover of the cell wall of Bacillus subtilis W-23 during logarithmic growth. Biochem Biophys Res Commun. 1970 May 22;39(4):699–706. doi: 10.1016/0006-291x(70)90261-5. [DOI] [PubMed] [Google Scholar]
  15. Millar W. N., Casida L. E., Jr Evidence for muramic acid in soil. Can J Microbiol. 1970 May;16(5):299–304. doi: 10.1139/m70-054. [DOI] [PubMed] [Google Scholar]
  16. VAN TUBERGEN R. P., SETLOW R. B. Quantitative radioautographic studies on exponentially growing cultures of Escherichia coli. The distribution of parental DNA, RNA, protein, and cell wall among progeny cells. Biophys J. 1961 Sep;1:589–625. doi: 10.1016/s0006-3495(61)86911-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. White D. C., Frerman F. E. Extraction, characterization, and cellular localization of the lipids of Staphylococcus aureus. J Bacteriol. 1967 Dec;94(6):1854–1867. doi: 10.1128/jb.94.6.1854-1867.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wong W., Young F. E., Chatterjee A. N. Regulation of bacterial cell walls: turnover of cell wall in Staphylococcus aureus. J Bacteriol. 1974 Nov;120(2):837–843. doi: 10.1128/jb.120.2.837-843.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES