Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1981 Feb;37(2):813–820. doi: 10.1128/jvi.37.2.813-820.1981

Defective lysis of streptomycin-resistant escherichia coli cells infected with bacteriophage f2.

J De Mars Cody, T W Conway
PMCID: PMC171069  PMID: 6783768

Abstract

A lysis defect was found to account for the failure of a streptomycin-resistant strain of Escherichia coli to form plaques when infected with the male-specific bacteriophage f2. The lysis defect was associated with the mutation to streptomycin resistance. Large amounts of apparently normal bacteriophage accumulated in these cells. Cell-free extracts from both the parental and mutant strains synthesized a potential lysis protein in considerable amounts in response to formaldehyde-treated f2 RNA but not in response to untreated RNA. As predicted from the nucleotide sequence of the analogous MS2 phage, the protein synthesized in vitro had the expected molecular weight and lacked glycine. The cistron for the lysis protein overlapped portions of the coat and replicase cistrons and was translated in the +1 reading frame. Initiation at the lysis protein cistron may be favored by translation errors that expose the normally masked initiation site, and streptomycin-resistant ribosomes, known to have more faithful translation properties, may be unable to efficiently synthesize the lysis protein.

Full text

PDF
813

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artman M., Werthamer S. Transition from streptomycin-sensitive to streptomycin-resistant protein synthesis during bacteriophage T4 development. Biochem Biophys Res Commun. 1974 Jul 10;59(1):75–81. doi: 10.1016/s0006-291x(74)80176-2. [DOI] [PubMed] [Google Scholar]
  2. Atkins J. F., Steitz J. A., Anderson C. W., Model P. Binding of mammalian ribosomes to MS2 phage RNA reveals an overlapping gene encoding a lysis function. Cell. 1979 Oct;18(2):247–256. doi: 10.1016/0092-8674(79)90044-8. [DOI] [PubMed] [Google Scholar]
  3. Beremand M. N., Blumenthal T. Overlapping genes in RNA phage: a new protein implicated in lysis. Cell. 1979 Oct;18(2):257–266. doi: 10.1016/0092-8674(79)90045-x. [DOI] [PubMed] [Google Scholar]
  4. Blumberg D. D., Malamy M. H. Evidence for the presence of nontranslated T7 late mRNA in infected F'(PIF+) episome-containing cells. J Virol. 1974 Feb;13(2):378–385. doi: 10.1128/jvi.13.2.378-385.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Britton J. R., Haselkorn R. Permeability lesions in male Escherichia coli infected with bacteriophage T7. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2222–2226. doi: 10.1073/pnas.72.6.2222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chakrabarti S. L., Gorini L. A link between streptomycin and rifampicin mutation. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2084–2087. doi: 10.1073/pnas.72.6.2084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chakrabarti S. L., Gorini L. Interaction between mutations of ribosomes and RNA polymerase: a pair of strA and rif mutants individually temperature-insensitive but temperature-sensitive in combination. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1157–1161. doi: 10.1073/pnas.74.3.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chakrabarti S., Gorini L. Growth of bacteriophages MS2 and T7 on streptomycin-resistant mutants of Escherichia coli. J Bacteriol. 1975 Feb;121(2):670–674. doi: 10.1128/jb.121.2.670-674.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Condit R. C. F factor-mediated inhibition of bacteriophage T7 growth: increased membrane permeability and decreased ATP levels following T7 infection of male Escherichia coli. J Mol Biol. 1975 Oct 15;98(1):45–59. doi: 10.1016/s0022-2836(75)80100-8. [DOI] [PubMed] [Google Scholar]
  10. Engelberg H., Soudry E. Ribonucleic acid bacteriophage release: requirement for host-controlled protein synthesis. J Virol. 1971 Sep;8(3):257–264. doi: 10.1128/jvi.8.3.257-264.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fiers W., Contreras R., Duerinck F., Haegeman G., Iserentant D., Merregaert J., Min Jou W., Molemans F., Raeymaekers A., Van den Berghe A. Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature. 1976 Apr 8;260(5551):500–507. doi: 10.1038/260500a0. [DOI] [PubMed] [Google Scholar]
  12. Held W. A., Gette W. R., Nomura M. Role of 16S ribosomal ribonucleic acid and the 30S ribosomal protein S12 in the initiation of natural messenger ribonucleic acid translation. Biochemistry. 1974 May 7;13(10):2115–2122. doi: 10.1021/bi00707a019. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lodish H. F. Secondary structure of bacteriophage f2 ribonucleic acid and the initiation of in vitro protein biosynthesis. J Mol Biol. 1970 Jun 28;50(3):689–702. doi: 10.1016/0022-2836(70)90093-8. [DOI] [PubMed] [Google Scholar]
  15. Manley J. L. Synthesis and degradation of termination and premature-termination fragments of beta-galactosidase in vitro and in vivo. J Mol Biol. 1978 Nov 15;125(4):407–432. doi: 10.1016/0022-2836(78)90308-x. [DOI] [PubMed] [Google Scholar]
  16. Model P., Webster R. E., Zinder N. D. Characterization of Op3, a lysis-defective mutant of bacteriophage f2. Cell. 1979 Oct;18(2):235–246. doi: 10.1016/0092-8674(79)90043-6. [DOI] [PubMed] [Google Scholar]
  17. Nomura M., Morgan E. A. Genetics of bacterial ribosomes. Annu Rev Genet. 1977;11:297–347. doi: 10.1146/annurev.ge.11.120177.001501. [DOI] [PubMed] [Google Scholar]
  18. Osborn M., Weiner A. M., Weber K. Large scale purification of A-protein from bacterior17. Eur J Biochem. 1970 Nov;17(1):63–67. doi: 10.1111/j.1432-1033.1970.tb01134.x. [DOI] [PubMed] [Google Scholar]
  19. Parker J., Friesen J. D. "Two out of three" codon reading leading to mistranslation in vivo. Mol Gen Genet. 1980 Feb;177(3):439–445. doi: 10.1007/BF00271482. [DOI] [PubMed] [Google Scholar]
  20. Singer R. E., Conway T. W. Defective initiation of f2 RNA translation by ribosomes from bacteriophage T4-infected cells. Biochim Biophys Acta. 1973 Nov 26;331(1):102–116. doi: 10.1016/0005-2787(73)90423-1. [DOI] [PubMed] [Google Scholar]
  21. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  22. Studier F. W. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol. 1973 Sep 15;79(2):237–248. doi: 10.1016/0022-2836(73)90003-x. [DOI] [PubMed] [Google Scholar]
  23. Weissmann C. Lysogeny by f2 phage? Nature. 1978 Jan 12;271(5641):188–188. doi: 10.1038/271188b0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES