Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1981 May;38(2):497–503. doi: 10.1128/jvi.38.2.497-503.1981

Specialized transduction with lambda plac5: dependence on recA and on configuration of lac and att lambda.

R D Porter, M W Lark, K B Low
PMCID: PMC171180  PMID: 6454007

Abstract

The construction of lambda plac5 transducing phages carrying various lacZ alleles is described. Genetically disabled (N- N- P-) lambda plac transducing the phages were used to study the dependence of specialized transduction on host RecA function and on the location of the lacZ gene in the recipient strain. In the absence of site-specific recombination at att lambda, transduction was completely dependent on host RecA function. Regardless of the configuration of att lambda, lambda plac transducing phages recombined at a 20- to 50-fold higher frequency with F42 lac than with a lac gene located in the cellular chromosome. Deletion mutants of lacZ in the recipient strain were used to show that the probability of lac recombination resulting from lambda plac infection is apparently proportional to the amount of homology between the parental lacZ genes.

Full text

PDF
497

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birge E. A., Low K. B. Detection of transcribable recombination products following conjugation in rec+, reCB- and recC-strains of Escherichia coli K12. J Mol Biol. 1974 Mar 15;83(4):447–457. doi: 10.1016/0022-2836(74)90506-3. [DOI] [PubMed] [Google Scholar]
  2. Echols H., Gingery R., Moore L. Integrative recombination function of bacteriophage lambda: evidence for a site-specific recombination enzyme. J Mol Biol. 1968 Jul 14;34(2):251–260. doi: 10.1016/0022-2836(68)90250-7. [DOI] [PubMed] [Google Scholar]
  3. Gottesman M. E., Yarmolinsky M. B. Integration-negative mutants of bacteriophage lambda. J Mol Biol. 1968 Feb 14;31(3):487–505. doi: 10.1016/0022-2836(68)90423-3. [DOI] [PubMed] [Google Scholar]
  4. Jordan E., Saedler H., Starlinger P. O0 and strong-polar mutations in the gal operon are insertions. Mol Gen Genet. 1968;102(4):353–363. doi: 10.1007/BF00433726. [DOI] [PubMed] [Google Scholar]
  5. Lieb M. Lambda mutants which persist as plasmids. J Virol. 1970 Aug;6(2):218–225. doi: 10.1128/jvi.6.2.218-225.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Low B. Formation of merodiploids in matings with a class of Rec- recipient strains of Escherichia coli K12. Proc Natl Acad Sci U S A. 1968 May;60(1):160–167. doi: 10.1073/pnas.60.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Low B. Rapid mapping of conditional and auxotrophic mutations in Escherichia coli K-12. J Bacteriol. 1973 Feb;113(2):798–812. doi: 10.1128/jb.113.2.798-812.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Low K. B., Porter D. D. Modes of gene transfer and recombination in bacteria. Annu Rev Genet. 1978;12:249–287. doi: 10.1146/annurev.ge.12.120178.001341. [DOI] [PubMed] [Google Scholar]
  9. Malamy M. H., Fiandt M., Szybalski W. Electron microscopy of polar insertions in the lac operon of Escherichia coli. Mol Gen Genet. 1972;119(3):207–222. doi: 10.1007/BF00333859. [DOI] [PubMed] [Google Scholar]
  10. Morse M L, Lederberg E M, Lederberg J. Transductional Heterogenotes in Escherichia Coli. Genetics. 1956 Sep;41(5):758–779. doi: 10.1093/genetics/41.5.758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Porter R. D., McLaughlin T., Low B. Transduction versus "conjuduction": evidence for multiple roles for exonuclease V in genetic recombination in Escherichia coli. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):1043–1047. doi: 10.1101/sqb.1979.043.01.113. [DOI] [PubMed] [Google Scholar]
  12. Shapiro J. A. Mutations caused by the insertion of genetic material into the galactose operon of Escherichia coli. J Mol Biol. 1969 Feb 28;40(1):93–105. doi: 10.1016/0022-2836(69)90298-8. [DOI] [PubMed] [Google Scholar]
  13. Shapiro J., Machattie L., Eron L., Ihler G., Ippen K., Beckwith J. Isolation of pure lac operon DNA. Nature. 1969 Nov 22;224(5221):768–774. doi: 10.1038/224768a0. [DOI] [PubMed] [Google Scholar]
  14. Shimada K., Campbell A. Int-constitutive mutants of bacteriophage lambda. Proc Natl Acad Sci U S A. 1974 Jan;71(1):237–241. doi: 10.1073/pnas.71.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shimada K., Weisberg R. A., Gottesman M. E. Prophage lambda at unusual chromosomal locations. I. Location of the secondary attachment sites and the properties of the lysogens. J Mol Biol. 1972 Feb 14;63(3):483–503. doi: 10.1016/0022-2836(72)90443-3. [DOI] [PubMed] [Google Scholar]
  16. Signer E. R. Plasmid formation: a new mode of lysogeny by phase lambda. Nature. 1969 Jul 12;223(5202):158–160. doi: 10.1038/223158a0. [DOI] [PubMed] [Google Scholar]
  17. Zipser D. Orientation of nonsense codons on the genetic map of the lac operon. Science. 1967 Sep 8;157(3793):1176–1177. doi: 10.1126/science.157.3793.1176. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES