Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1997 Feb;60(2):447–458.

Estimating the age of alleles by use of intraallelic variability.

M Slatkin 1, B Rannala 1
PMCID: PMC1712388  PMID: 9012419

Abstract

A method is presented for estimating the age of an allele by use of its frequency and the extent of variation among different copies. The method uses the joint distribution of the number of copies in a population sample and the coalescence times of the intraallelic gene genealogy conditioned on the number of copies. The linear birth-death process is used to approximate the dynamics of a rare allele in a finite population. A maximum-likelihood estimate of the age of the allele is obtained by Monte Carlo integration over the coalescence times. The method is applied to two alleles at the cystic fibrosis (CFTR) locus, deltaF508 and G542X, for which intraallelic variability at three intronic microsatellite loci has been examined. Our results indicate that G542X is somewhat older than deltaF508. Although absolute estimates depend on the mutation rates at the microsatellite loci, our results support the hypothesis that deltaF508 arose < 500 generations (approximately 10,000 years) ago.

Full text

PDF
447

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Casals T., Nunes V., Palacio A., Giménez J., Gaona A., Ibáez N., Morral N., Estivill X. Cystic fibrosis in Spain: high frequency of mutation G542X in the Mediterranean coastal area. Hum Genet. 1993 Mar;91(1):66–70. doi: 10.1007/BF00230225. [DOI] [PubMed] [Google Scholar]
  2. Griffiths R. C., Tavaré S. Sampling theory for neutral alleles in a varying environment. Philos Trans R Soc Lond B Biol Sci. 1994 Jun 29;344(1310):403–410. doi: 10.1098/rstb.1994.0079. [DOI] [PubMed] [Google Scholar]
  3. Kaplan N. L., Lewis P. O., Weir B. S. Age of the delta F508 cystic fibrosis mutation. Nat Genet. 1994 Nov;8(3):216–218. doi: 10.1038/ng1194-216a. [DOI] [PubMed] [Google Scholar]
  4. Kerem B., Rommens J. M., Buchanan J. A., Markiewicz D., Cox T. K., Chakravarti A., Buchwald M., Tsui L. C. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989 Sep 8;245(4922):1073–1080. doi: 10.1126/science.2570460. [DOI] [PubMed] [Google Scholar]
  5. Morral N., Nunes V., Casals T., Chillón M., Giménez J., Bertranpetit J., Estivill X. Microsatellite haplotypes for cystic fibrosis: mutation frameworks and evolutionary tracers. Hum Mol Genet. 1993 Jul;2(7):1015–1022. doi: 10.1093/hmg/2.7.1015. [DOI] [PubMed] [Google Scholar]
  6. Nee S., May R. M., Harvey P. H. The reconstructed evolutionary process. Philos Trans R Soc Lond B Biol Sci. 1994 May 28;344(1309):305–311. doi: 10.1098/rstb.1994.0068. [DOI] [PubMed] [Google Scholar]
  7. Risch N., de Leon D., Ozelius L., Kramer P., Almasy L., Singer B., Fahn S., Breakefield X., Bressman S. Genetic analysis of idiopathic torsion dystonia in Ashkenazi Jews and their recent descent from a small founder population. Nat Genet. 1995 Feb;9(2):152–159. doi: 10.1038/ng0295-152. [DOI] [PubMed] [Google Scholar]
  8. Romeo G., Devoto M., Galietta L. J. Why is the cystic fibrosis gene so frequent? Hum Genet. 1989 Dec;84(1):1–5. doi: 10.1007/BF00210660. [DOI] [PubMed] [Google Scholar]
  9. Schroeder S. A., Gaughan D. M., Swift M. Protection against bronchial asthma by CFTR delta F508 mutation: a heterozygote advantage in cystic fibrosis. Nat Med. 1995 Jul;1(7):703–705. doi: 10.1038/nm0795-703. [DOI] [PubMed] [Google Scholar]
  10. Serre J. L., Simon-Bouy B., Mornet E., Jaume-Roig B., Balassopoulou A., Schwartz M., Taillandier A., Boué J., Boué A. Studies of RFLP closely linked to the cystic fibrosis locus throughout Europe lead to new considerations in populations genetics. Hum Genet. 1990 Apr;84(5):449–454. doi: 10.1007/BF00195818. [DOI] [PubMed] [Google Scholar]
  11. Slatkin M. Gene genealogies within mutant allelic classes. Genetics. 1996 May;143(1):579–587. doi: 10.1093/genetics/143.1.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tavaré S. Line-of-descent and genealogical processes, and their applications in population genetics models. Theor Popul Biol. 1984 Oct;26(2):119–164. doi: 10.1016/0040-5809(84)90027-3. [DOI] [PubMed] [Google Scholar]
  13. Thompson E. A. Estimation of age and rate of increase of rare variants. Am J Hum Genet. 1976 Sep;28(5):442–452. [PMC free article] [PubMed] [Google Scholar]
  14. Watterson Reversibility and the age of an allele. I. Moran's infinitely many neutral alleles model. Theor Popul Biol. 1976 Dec;10(3):239–253. doi: 10.1016/0040-5809(76)90018-6. [DOI] [PubMed] [Google Scholar]
  15. Weber J. L., Wong C. Mutation of human short tandem repeats. Hum Mol Genet. 1993 Aug;2(8):1123–1128. doi: 10.1093/hmg/2.8.1123. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES