Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1981 Jun;38(3):1084–1089. doi: 10.1128/jvi.38.3.1084-1089.1981

Differences in mechanisms of transformation by independent feline sarcoma virus isolates.

F H Reynolds Jr, W J Van de Ven, J Blomberg, J R Stephenson
PMCID: PMC171249  PMID: 6165838

Abstract

The Gardner and Snyder-Theilen isolates of feline sarcoma virus (FeSV) have previously been shown to encode high-molecular-weight polyproteins with a transforming function and an associated tyrosine-specific protein kinase activity. Cells transformed by these viruses exhibited morphological alterations, elevated levels of phosphotyrosine, and a reduced capacity for binding epidermal growth factor. In addition, polyproteins encoded by both of these FeSV isolates bound to, and phosphorylated tyrosine acceptor sites within, a 150,000-molecular-weight cellular substrate (P150). McDonough FeSV-transformed cells resembled Gardner and Snyder-Theilen FeSV transformants with respect to morphological changes and a reduced capacity for epidermal growth factor binding. in contrast to the other two FeSV isolates, however, McDonough FeSV encoded as its major translational product a high-molecular-weight polyprotein with probable transforming function but without protein kinase activity detectable under similar assay conditions. Moreover, total cellular levels of phosphotyrosine remained unaltered in McDonough FeSV-transformed cells, and the major McDonough FeSV polyprotein translational product lacked binding affinity for P150. These findings argue for differences in the mechanisms of transformation by these independently derived FeSV isolates.

Full text

PDF
1084

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbacid M., Beemon K., Devare S. G. Origin and functional properties of the major gene product of the Snyder-Theilen strain of feline sarcoma virus. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5158–5162. doi: 10.1073/pnas.77.9.5158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barbacid M., Lauver A. V., Devare S. G. Biochemical and immunological characterization of polyproteins coded for by the McDonough, Gardner-Arnstein, and Snyder-Theilen strains of feline sarcoma virus. J Virol. 1980 Jan;33(1):196–207. doi: 10.1128/jvi.33.1.196-207.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blomberg J., Reynolds F. H., Jr, Van de Ven W. J., Stephenson J. R. Abelson murine leukaemia virus transformation involves loss of epidermal growth factor-binding sites. Nature. 1980 Jul 31;286(5772):504–507. doi: 10.1038/286504a0. [DOI] [PubMed] [Google Scholar]
  4. Blomberg J., Van de Ven W. J., Reynolds F. H., Jr, Nalewaik R. P., Stephenson J. R. Snyder-Theilen feline sarcoma virus P85 contains a single phosphotyrosine acceptor site recognized by its associated protein kinase. J Virol. 1981 Jun;38(3):886–894. doi: 10.1128/jvi.38.3.886-894.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Collett M. S., Erikson R. L. Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci U S A. 1978 Apr;75(4):2021–2024. doi: 10.1073/pnas.75.4.2021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Collett M. S., Purchio A. F., Erikson R. L. Avian sarcoma virus-transforming protein, pp60src shows protein kinase activity specific for tyrosine. Nature. 1980 May 15;285(5761):167–169. doi: 10.1038/285167a0. [DOI] [PubMed] [Google Scholar]
  7. Donner L., Turek L. P., Ruscetti S. K., Fedele L. A., Sherr C. J. Transformation-defective mutants of feline sarcoma virus which express a product of the viral src gene. J Virol. 1980 Jul;35(1):129–140. doi: 10.1128/jvi.35.1.129-140.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frankel A. E., Gilbert J. H., Porzig K. J., Scolnick E. M., Aaronson S. A. Nature and distribution of feline sarcoma virus nucleotide sequences. J Virol. 1979 Jun;30(3):821–827. doi: 10.1128/jvi.30.3.821-827.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gardner M. B., Rongey R. W., Arnstein P., Estes J. D., Sarma P., Huebner R. J., Rickard C. G. Experimental transmission of feline fibrosarcoma to cats and dogs. Nature. 1970 May 30;226(5248):807–809. doi: 10.1038/226807a0. [DOI] [PubMed] [Google Scholar]
  10. Hunter T., Sefton B. M. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1311–1315. doi: 10.1073/pnas.77.3.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Khan A. S., Stephenson J. R. Feline leukemia virus: biochemical and immunological characterization of gag gene-coded structural proteins. J Virol. 1977 Sep;23(3):599–607. doi: 10.1128/jvi.23.3.599-607.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Levinson A. D., Oppermann H., Levintow L., Varmus H. E., Bishop J. M. Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell. 1978 Oct;15(2):561–572. doi: 10.1016/0092-8674(78)90024-7. [DOI] [PubMed] [Google Scholar]
  13. McDonough S. K., Larsen S., Brodey R. S., Stock N. D., Hardy W. D., Jr A transmissible feline fibrosarcoma of viral origin. Cancer Res. 1971 Jul;31(7):953–956. [PubMed] [Google Scholar]
  14. Reynolds F. H., Jr, Sacks T. L., Deobagkar D. N., Stephenson J. R. Cells nonproductively transformed by Abelson murine leukemia virus express a high molecular weight polyprotein containing structural and nonstructural components. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3974–3978. doi: 10.1073/pnas.75.8.3974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Reynolds F. H., Jr, Van de Ven W. J., Blomberg J., Stephenson J. R. Involvement of a high-molecular-weight polyprotein translational product of Snyder-Theilen Feline sarcoma virus in malignant transformation. J Virol. 1981 Feb;37(2):643–653. doi: 10.1128/jvi.37.2.643-653.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reynolds F. H., Jr, Van de Ven W. J., Stephenson J. R. Feline sarcoma virus P115-associated protein kinase phosphorylates tyrosine. Identification of a cellular substrate conserved during evolution. J Biol Chem. 1980 Nov 25;255(22):11040–11047. [PubMed] [Google Scholar]
  17. Reynolds F. H., Jr, Van de Ven W. J., Stephenson J. R. Feline sarcoma virus polyprotein P115 binds a host phosphoprotein in transformed cells. Nature. 1980 Jul 24;286(5771):409–412. doi: 10.1038/286409a0. [DOI] [PubMed] [Google Scholar]
  18. Sacks T. L., Reynolds F. H., Jr, Deobagkar D. N., Stephenson J. R. Murine leukemia virus (T-8)-transformed cells: identification of a precursor polyprotein containing gag gene-coded proteins (p15 and p12) and a nonstructural component. J Virol. 1978 Sep;27(3):809–814. doi: 10.1128/jvi.27.3.809-814.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sefton B. M., Hunter T., Beemon K., Eckhart W. Evidence that the phosphorylation of tyrosine is essential for cellular transformation by Rous sarcoma virus. Cell. 1980 Jul;20(3):807–816. doi: 10.1016/0092-8674(80)90327-x. [DOI] [PubMed] [Google Scholar]
  20. Sherr C. J., Sen A., Todaro G. J., Sliski A., Essex M. Pseudotypes of feline sarcoma virus contain an 85,000-dalton protein with feline oncornavirus-associated cell membrane antigen (FOCMA) activity. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1505–1509. doi: 10.1073/pnas.75.3.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shibuya M., Hanafusa T., Hanafusa H., Stephenson J. R. Homology exists among the transforming sequences of avian and feline sarcoma viruses. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6536–6540. doi: 10.1073/pnas.77.11.6536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shih T. Y., Papageorge A. G., Stokes P. E., Weeks M. O., Scolnick E. M. Guanine nucleotide-binding and autophosphorylating activities associated with the p21src protein of Harvey murine sarcoma virus. Nature. 1980 Oct 23;287(5784):686–691. doi: 10.1038/287686a0. [DOI] [PubMed] [Google Scholar]
  23. Snyder S. P., Theilen G. H. Transmissible feline fibrosarcoma. Nature. 1969 Mar 15;221(5185):1074–1075. doi: 10.1038/2211074a0. [DOI] [PubMed] [Google Scholar]
  24. Stephenson J. R., Khan A. S., Sliski A. H., Essex M. Feline oncornavirus-associated cell membrane antigen: evidence for an immunologically crossreactive feline sarcoma virus-coded protein. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5608–5612. doi: 10.1073/pnas.74.12.5608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stephenson J. R., Van de Ven W. J., Khan A. S., Reynolds F. H., Jr Mammalian RNA type-C transforming viruses: characterization of virus-coded polyproteins containing phosphorylated components with possible transforming functions. Cold Spring Harb Symp Quant Biol. 1980;44(Pt 2):865–874. doi: 10.1101/sqb.1980.044.01.093. [DOI] [PubMed] [Google Scholar]
  26. Todaro G. J., De Larco J. E., Cohen S. Transformation by murine and feline sarcoma viruses specifically blocks binding of epidermal growth factor to cells. Nature. 1976 Nov 4;264(5581):26–31. doi: 10.1038/264026a0. [DOI] [PubMed] [Google Scholar]
  27. Todaro G. J., De Larco J. E. Growth factors produced by sarcoma virus-transformed cells. Cancer Res. 1978 Nov;38(11 Pt 2):4147–4154. [PubMed] [Google Scholar]
  28. Ushiro H., Cohen S. Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A-431 cell membranes. J Biol Chem. 1980 Sep 25;255(18):8363–8365. [PubMed] [Google Scholar]
  29. Van de Ven W. J., Khan A. S., Reynolds F. H., Jr, Mason K. T., Stephenson J. R. Translational products encoded by newly acquired sequences of independently derived feline sarcoma virus isolates are structurally related. J Virol. 1980 Mar;33(3):1034–1045. doi: 10.1128/jvi.33.3.1034-1045.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Van de Ven W. J., Reynolds F. H., Jr, Nalewaik R. P., Stephenson J. R. Characterization of a 170,000-dalton polyprotein encoded by the McDonough strain of feline sarcoma virus. J Virol. 1980 Jul;35(1):165–175. doi: 10.1128/jvi.35.1.165-175.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Van de Ven W. J., Reynolds F. H., Jr, Stephenson J. R. The nonstructural components of polyproteins encoded by replication-defective mammalian transforming retroviruses are phosphorylated and have associated protein kinase activity. Virology. 1980 Feb;101(1):185–197. doi: 10.1016/0042-6822(80)90495-x. [DOI] [PubMed] [Google Scholar]
  32. Witte O. N., Dasgupta A., Baltimore D. Abelson murine leukaemia virus protein is phosphorylated in vitro to form phosphotyrosine. Nature. 1980 Feb 28;283(5750):826–831. doi: 10.1038/283826a0. [DOI] [PubMed] [Google Scholar]
  33. Witte O. N., Rosenberg N., Paskind M., Shields A., Baltimore D. Identification of an Abelson murine leukemia virus-encoded protein present in transformed fibroblast and lymphoid cells. Proc Natl Acad Sci U S A. 1978 May;75(5):2488–2492. doi: 10.1073/pnas.75.5.2488. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES