Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1989 Mar;33(3):331–335. doi: 10.1128/aac.33.3.331

In vitro effects of beta-lactams combined with beta-lactamase inhibitors against methicillin-resistant Staphylococcus aureus.

S Kobayashi 1, S Arai 1, S Hayashi 1, T Sakaguchi 1
PMCID: PMC171488  PMID: 2786369

Abstract

The effects of combinations of beta-lactams with two beta-lactamase inhibitors, sulbactam and clavulanic acid, were determined in vitro against 22 clinical isolates of methicillin-resistant Staphylococcus aureus. Combinations of cefpirome, cefotaxime, and cefazolin with sulbactam (10 micrograms/ml) showed synergistic effects against more than 70% of the strains. Combinations of methicillin and penicillin G with sulbactam also showed synergistic effects against 50 and 68% of the strains, respectively, while cefotiam, moxalactam, flomoxef, and cefmetazole in combination with sulbactam showed such effects against only 40% or fewer. Clavulanic acid was synergistic only when combined with penicillin G, the effect probably being due to the beta-lactamase inhibition by the inhibitor. Sulbactam did not improve the antimicrobial activities of the beta-lactams against methicillin-susceptible S. aureus strains. At 42 degrees C the MICs of cefotaxime, methicillin, and flomoxef alone were markedly decreased from the values at 35 degrees C, and no synergy between these beta-lactams and sulbactam appeared. The resistance to penicillin G was not inhibited by incubation at 42 degrees C, and combinations of penicillin G with sulbactam and clavulanic acid showed synergy. The amounts of beta-lactamase produced were not related to the decreases in the MICs of the beta-lactams, except for penicillin G combined with sulbactam. Clavulanic acid showed slightly stronger beta-lactamase-inhibiting activity than sulbactam did. These results suggest that the synergy between sulbactam and the beta-lactams, except for penicillin G, may not be due to beta-lactamase inhibition but to suppression of the methicillin-resistant S. aureus-specific resistance based on other factors.

Full text

PDF
331

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acar J. F., Courvalin P., Chabbert Y. A. Methicillin-resistant staphylococcemia: bacteriological failure of treatment with cephalosporins. Antimicrob Agents Chemother (Bethesda) 1970;10:280–285. [PubMed] [Google Scholar]
  2. Annear D. I. The effect of temperature on resistance of Staphylococcus aureus to methicillin and some other antibioics. Med J Aust. 1968 Mar 16;1(11):444–446. [PubMed] [Google Scholar]
  3. Aswapokee N., Neu H. C. A sulfone beta-lactam compound which acts as a beta-lactamase inhibitor. J Antibiot (Tokyo) 1978 Dec;31(12):1238–1244. doi: 10.7164/antibiotics.31.1238. [DOI] [PubMed] [Google Scholar]
  4. Boyce J. M., Medeiros A. A. Role of beta-lactamase in expression of resistance by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1987 Sep;31(9):1426–1428. doi: 10.1128/aac.31.9.1426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cafferkey M. T., Hone R., Keane C. T. Antimicrobial chemotherapy of septicemia due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1985 Dec;28(6):819–823. doi: 10.1128/aac.28.6.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chambers H. F., Hackbarth C. J. Effect of NaCl and nafcillin on penicillin-binding protein 2a and heterogeneous expression of methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 1987 Dec;31(12):1982–1988. doi: 10.1128/aac.31.12.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chambers H. F., Hartman B. J., Tomasz A. Increased amounts of a novel penicillin-binding protein in a strain of methicillin-resistant Staphylococcus aureus exposed to nafcillin. J Clin Invest. 1985 Jul;76(1):325–331. doi: 10.1172/JCI111965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. English A. R., Retsema J. A., Girard A. E., Lynch J. E., Barth W. E. CP-45,899, a beta-lactamase inhibitor that extends the antibacterial spectrum of beta-lactams: initial bacteriological characterization. Antimicrob Agents Chemother. 1978 Sep;14(3):414–419. doi: 10.1128/aac.14.3.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grieble H. G., Krause S. L., Pappas S. A., DiCostanzo M. B. The prevalence of high-level methicillin resistance in multiply resistant hospital staphylococci. Medicine (Baltimore) 1981 Jan;60(1):62–69. doi: 10.1097/00005792-198101000-00006. [DOI] [PubMed] [Google Scholar]
  10. Hartman B. J., Tomasz A. Expression of methicillin resistance in heterogeneous strains of Staphylococcus aureus. Antimicrob Agents Chemother. 1986 Jan;29(1):85–92. doi: 10.1128/aac.29.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hartman B. J., Tomasz A. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol. 1984 May;158(2):513–516. doi: 10.1128/jb.158.2.513-516.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jones R. N., Wilson H. W., Novick W. J., Jr In vitro evaluation of pyridine-2-azo-p-dimethylaniline cephalosporin, a new diagnostic chromogenic reagent, and comparison with nitrocefin, cephacetrile, and other beta-lactam compounds. J Clin Microbiol. 1982 Apr;15(4):677–683. doi: 10.1128/jcm.15.4.677-683.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kobayashi S., Arai S., Hayashi S., Fujimoto K. Beta-lactamase stability of cefpirome (HR 810), a new cephalosporin with a broad antimicrobial spectrum. Antimicrob Agents Chemother. 1986 Nov;30(5):713–718. doi: 10.1128/aac.30.5.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kono M., Sasatsu M., O'Hara K., Shiomi Y., Hayasaka T. Mechanism of resistance to some cephalosporins in Staphylococcus aureus. Antimicrob Agents Chemother. 1983 Jun;23(6):938–940. doi: 10.1128/aac.23.6.938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McDougal L. K., Thornsberry C. The role of beta-lactamase in staphylococcal resistance to penicillinase-resistant penicillins and cephalosporins. J Clin Microbiol. 1986 May;23(5):832–839. doi: 10.1128/jcm.23.5.832-839.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murakami K., Nomura K., Doi M., Yoshida T. Production of low-affinity penicillin-binding protein by low- and high-resistance groups of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1987 Sep;31(9):1307–1311. doi: 10.1128/aac.31.9.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Neu H. C., Fu K. P. Clavulanic acid, a novel inhibitor of beta-lactamases. Antimicrob Agents Chemother. 1978 Nov;14(5):650–655. doi: 10.1128/aac.14.5.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reading C., Cole M. Clavulanic acid: a beta-lactamase-inhiting beta-lactam from Streptomyces clavuligerus. Antimicrob Agents Chemother. 1977 May;11(5):852–857. doi: 10.1128/aac.11.5.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rossi L., Tonin E., Cheng Y. R., Fontana R. Regulation of penicillin-binding protein activity: description of a methicillin-inducible penicillin-binding protein in Staphylococcus aureus. Antimicrob Agents Chemother. 1985 May;27(5):828–831. doi: 10.1128/aac.27.5.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Seibert G., Klesel N., Limbert M., Schrinner E., Seeger K., Winkler I., Lattrell R., Blumbach J., Dürckheimer W., Fleischmann K. HR 810, a new parenteral cephalosporin with a broad antibacterial spectrum. Arzneimittelforschung. 1983;33(8):1084–1086. doi: 10.1002/chin.198350201. [DOI] [PubMed] [Google Scholar]
  21. Tsuji T., Satoh H., Narisada M., Hamashima Y., Yoshida T. Synthesis and antibacterial activity of 6315-S, a new member of the oxacephem antibiotic. J Antibiot (Tokyo) 1985 Apr;38(4):466–476. doi: 10.7164/antibiotics.38.466. [DOI] [PubMed] [Google Scholar]
  22. Ubukata K., Yamashita N., Konno M. Occurrence of a beta-lactam-inducible penicillin-binding protein in methicillin-resistant staphylococci. Antimicrob Agents Chemother. 1985 May;27(5):851–857. doi: 10.1128/aac.27.5.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Utsui Y., Yokota T. Role of an altered penicillin-binding protein in methicillin- and cephem-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1985 Sep;28(3):397–403. doi: 10.1128/aac.28.3.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. WADDELL W. J. A simple ultraviolet spectrophotometric method for the determination of protein. J Lab Clin Med. 1956 Aug;48(2):311–314. [PubMed] [Google Scholar]
  25. Wenzel R. P. The emergence of methicillin-resistant Staphylococcus aureus. Ann Intern Med. 1982 Sep;97(3):440–442. doi: 10.7326/0003-4819-97-3-440. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES