Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1988 Mar;42(3):414–421.

Gonadal dimorphism explained as a dosage effect of a locus on the sex chromosomes, the gonad-differentiation locus (GDL).

J German 1
PMCID: PMC1715147  PMID: 3348211

Abstract

In human somatic cells bearing two X chromosomes, one X is genetically inactivated throughout most of its length, whereas in cells with one X and one Y both sex chromosomes are active (with the exception of the constitutive heterochromatin of the Y that is inert). The vast base of information concerning normal and abnormal human sexual development that has accumulated since the advent of human cytogenetics 3 decades ago can be integrated by the following hypothesis: Homologous gonad-differentiation loci (GDLs) exist on the X and Y. The GDLs are strictly sex-linked; that is, normally they do not recombine during spermatogenesis, so that considerable divergence in DNA sequence doubtless has occurred between the locus on the X and the locus on the Y. The abundance of their evolutionarily conserved product--a substance still to be identified--determines the path of differentiation that the indifferent gonadal anlage of the early embryo will take: if only one GDL is transcribed, the case when two X chromosomes are present, ovary will develop; if two GDLs are transcribed, the case when a Y is present along with an X, testis will develop. By implication, facultative X inactivation is an integral and essential component of the system adopted in mammalian evolution for accomplishing gonadal--viz., sexual--dimorphism.

Full text

PDF
414

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson M., Page D. C., de la Chapelle A. Chromosome Y-specific DNA is transferred to the short arm of X chromosome in human XX males. Science. 1986 Aug 15;233(4765):786–788. doi: 10.1126/science.3738510. [DOI] [PubMed] [Google Scholar]
  2. Baker B. S., Belote J. M. Sex determination and dosage compensation in Drosophila melanogaster. Annu Rev Genet. 1983;17:345–393. doi: 10.1146/annurev.ge.17.120183.002021. [DOI] [PubMed] [Google Scholar]
  3. Burgoyne P. S. Genetic homology and crossing over in the X and Y chromosomes of Mammals. Hum Genet. 1982;61(2):85–90. doi: 10.1007/BF00274192. [DOI] [PubMed] [Google Scholar]
  4. Chandra H. S. Is human X chromosome inactivation a sex-determining device? Proc Natl Acad Sci U S A. 1985 Oct;82(20):6947–6949. doi: 10.1073/pnas.82.20.6947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cooke H. J., Brown W. R., Rappold G. A. Hypervariable telomeric sequences from the human sex chromosomes are pseudoautosomal. Nature. 1985 Oct 24;317(6039):687–692. doi: 10.1038/317687a0. [DOI] [PubMed] [Google Scholar]
  6. Disteche C. M., Casanova M., Saal H., Friedman C., Sybert V., Graham J., Thuline H., Page D. C., Fellous M. Small deletions of the short arm of the Y chromosome in 46,XY females. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7841–7844. doi: 10.1073/pnas.83.20.7841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eicher E. M., Washburn L. L. Genetic control of primary sex determination in mice. Annu Rev Genet. 1986;20:327–360. doi: 10.1146/annurev.ge.20.120186.001551. [DOI] [PubMed] [Google Scholar]
  8. FERGUSON-SMITH M. A., JOHNSTON A. W., WEINBERG A. N. The chromosome complement in true hermaphroditism. Lancet. 1960 Jul 16;2(7142):126–128. doi: 10.1016/s0140-6736(60)91267-8. [DOI] [PubMed] [Google Scholar]
  9. Ferguson-Smith M. A. X-Y chromosomal interchange in the aetiology of true hermaphroditism and of XX Klinefelter's syndrome. Lancet. 1966 Aug 27;2(7461):475–476. doi: 10.1016/s0140-6736(66)92778-4. [DOI] [PubMed] [Google Scholar]
  10. Geldwerth D., Bishop C., Guellaën G., Koenig M., Vergnaud G., Mandel J. L., Weissenbach J. Extensive DNA sequence homologies between the human Y and the long arm of the X chromosome. EMBO J. 1985 Jul;4(7):1739–1743. doi: 10.1002/j.1460-2075.1985.tb03844.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. German J., Simpson J. L., Chaganti R. S., Summitt R. L., Reid L. B., Merkatz I. R. Genetically determined sex-reversal in 46,XY humans. Science. 1978 Oct 6;202(4363):53–56. doi: 10.1126/science.567843. [DOI] [PubMed] [Google Scholar]
  12. Gropp A., Ohno S. The presence of a common embryonic blastema for ovarian and testicular parenchymal (follicular, interstitial and tubular) cells in cattle Bos taurus. Z Zellforsch Mikrosk Anat. 1966;74(4):505–528. doi: 10.1007/BF00496841. [DOI] [PubMed] [Google Scholar]
  13. Guellaen G., Casanova M., Bishop C., Geldwerth D., Andre G., Fellous M., Weissenbach J. Human XX males with Y single-copy DNA fragments. Nature. 1984 Jan 12;307(5947):172–173. doi: 10.1038/307172a0. [DOI] [PubMed] [Google Scholar]
  14. LYON M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature. 1961 Apr 22;190:372–373. doi: 10.1038/190372a0. [DOI] [PubMed] [Google Scholar]
  15. Lee M. G., Nurse P. Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature. 1987 May 7;327(6117):31–35. doi: 10.1038/327031a0. [DOI] [PubMed] [Google Scholar]
  16. Magenis R. E., Webb M. J., McKean R. S., Tomar D., Allen L. J., Kammer H., Van Dyke D. L., Lovrien E. Translocation(X;Y)(p22.33;p11.2) in XX males: etiology of male phenotype. Hum Genet. 1982;62(3):271–276. doi: 10.1007/BF00333535. [DOI] [PubMed] [Google Scholar]
  17. Page D. C. Sex reversal: deletion mapping the male-determining function of the human Y chromosome. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):229–235. doi: 10.1101/sqb.1986.051.01.028. [DOI] [PubMed] [Google Scholar]
  18. Polani P. E. Pairing of X and Y chromosomes, non-inactivation of X-linked genes, and the maleness factor. Hum Genet. 1982;60(3):207–211. doi: 10.1007/BF00303003. [DOI] [PubMed] [Google Scholar]
  19. Pritchard C. A., Goodfellow P. J., Goodfellow P. N. Mapping the limits of the human pseudoautosomal region and a candidate sequence for the male-determining gene. Nature. 1987 Jul 16;328(6127):273–275. doi: 10.1038/328273a0. [DOI] [PubMed] [Google Scholar]
  20. Simmler M. C., Rouyer F., Vergnaud G., Nyström-Lahti M., Ngo K. Y., de la Chapelle A., Weissenbach J. Pseudoautosomal DNA sequences in the pairing region of the human sex chromosomes. Nature. 1985 Oct 24;317(6039):692–697. doi: 10.1038/317692a0. [DOI] [PubMed] [Google Scholar]
  21. Singh R. P., Carr D. H. The anatomy and histology of XO human embryos and fetuses. Anat Rec. 1966 Jul;155(3):369–383. doi: 10.1002/ar.1091550309. [DOI] [PubMed] [Google Scholar]
  22. Speed R. M. Oocyte development in XO foetuses of man and mouse: the possible role of heterologous X-chromosome pairing in germ cell survival. Chromosoma. 1986;94(2):115–124. doi: 10.1007/BF00286989. [DOI] [PubMed] [Google Scholar]
  23. TURPIN R., LEJEUNE J., LAFOURCADE J., GAUTIER M. Aberrations chromosomiques et maladies humaines; la polydysspondylle à 45 chromosomes. C R Hebd Seances Acad Sci. 1959 Jun 22;248(25):3636–3638. [PubMed] [Google Scholar]
  24. Vergnaud G., Page D. C., Simmler M. C., Brown L., Rouyer F., Noel B., Botstein D., de la Chapelle A., Weissenbach J. A deletion map of the human Y chromosome based on DNA hybridization. Am J Hum Genet. 1986 Feb;38(2):109–124. [PMC free article] [PubMed] [Google Scholar]
  25. de la Chapelle A., Tippett P. A., Wetterstrand G., Page D. Genetic evidence of X-Y interchange in a human XX male. Nature. 1984 Jan 12;307(5947):170–171. doi: 10.1038/307170a0. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES