Abstract
In human somatic cells bearing two X chromosomes, one X is genetically inactivated throughout most of its length, whereas in cells with one X and one Y both sex chromosomes are active (with the exception of the constitutive heterochromatin of the Y that is inert). The vast base of information concerning normal and abnormal human sexual development that has accumulated since the advent of human cytogenetics 3 decades ago can be integrated by the following hypothesis: Homologous gonad-differentiation loci (GDLs) exist on the X and Y. The GDLs are strictly sex-linked; that is, normally they do not recombine during spermatogenesis, so that considerable divergence in DNA sequence doubtless has occurred between the locus on the X and the locus on the Y. The abundance of their evolutionarily conserved product--a substance still to be identified--determines the path of differentiation that the indifferent gonadal anlage of the early embryo will take: if only one GDL is transcribed, the case when two X chromosomes are present, ovary will develop; if two GDLs are transcribed, the case when a Y is present along with an X, testis will develop. By implication, facultative X inactivation is an integral and essential component of the system adopted in mammalian evolution for accomplishing gonadal--viz., sexual--dimorphism.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersson M., Page D. C., de la Chapelle A. Chromosome Y-specific DNA is transferred to the short arm of X chromosome in human XX males. Science. 1986 Aug 15;233(4765):786–788. doi: 10.1126/science.3738510. [DOI] [PubMed] [Google Scholar]
- Baker B. S., Belote J. M. Sex determination and dosage compensation in Drosophila melanogaster. Annu Rev Genet. 1983;17:345–393. doi: 10.1146/annurev.ge.17.120183.002021. [DOI] [PubMed] [Google Scholar]
- Burgoyne P. S. Genetic homology and crossing over in the X and Y chromosomes of Mammals. Hum Genet. 1982;61(2):85–90. doi: 10.1007/BF00274192. [DOI] [PubMed] [Google Scholar]
- Chandra H. S. Is human X chromosome inactivation a sex-determining device? Proc Natl Acad Sci U S A. 1985 Oct;82(20):6947–6949. doi: 10.1073/pnas.82.20.6947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooke H. J., Brown W. R., Rappold G. A. Hypervariable telomeric sequences from the human sex chromosomes are pseudoautosomal. Nature. 1985 Oct 24;317(6039):687–692. doi: 10.1038/317687a0. [DOI] [PubMed] [Google Scholar]
- Disteche C. M., Casanova M., Saal H., Friedman C., Sybert V., Graham J., Thuline H., Page D. C., Fellous M. Small deletions of the short arm of the Y chromosome in 46,XY females. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7841–7844. doi: 10.1073/pnas.83.20.7841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eicher E. M., Washburn L. L. Genetic control of primary sex determination in mice. Annu Rev Genet. 1986;20:327–360. doi: 10.1146/annurev.ge.20.120186.001551. [DOI] [PubMed] [Google Scholar]
- FERGUSON-SMITH M. A., JOHNSTON A. W., WEINBERG A. N. The chromosome complement in true hermaphroditism. Lancet. 1960 Jul 16;2(7142):126–128. doi: 10.1016/s0140-6736(60)91267-8. [DOI] [PubMed] [Google Scholar]
- Ferguson-Smith M. A. X-Y chromosomal interchange in the aetiology of true hermaphroditism and of XX Klinefelter's syndrome. Lancet. 1966 Aug 27;2(7461):475–476. doi: 10.1016/s0140-6736(66)92778-4. [DOI] [PubMed] [Google Scholar]
- Geldwerth D., Bishop C., Guellaën G., Koenig M., Vergnaud G., Mandel J. L., Weissenbach J. Extensive DNA sequence homologies between the human Y and the long arm of the X chromosome. EMBO J. 1985 Jul;4(7):1739–1743. doi: 10.1002/j.1460-2075.1985.tb03844.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- German J., Simpson J. L., Chaganti R. S., Summitt R. L., Reid L. B., Merkatz I. R. Genetically determined sex-reversal in 46,XY humans. Science. 1978 Oct 6;202(4363):53–56. doi: 10.1126/science.567843. [DOI] [PubMed] [Google Scholar]
- Gropp A., Ohno S. The presence of a common embryonic blastema for ovarian and testicular parenchymal (follicular, interstitial and tubular) cells in cattle Bos taurus. Z Zellforsch Mikrosk Anat. 1966;74(4):505–528. doi: 10.1007/BF00496841. [DOI] [PubMed] [Google Scholar]
- Guellaen G., Casanova M., Bishop C., Geldwerth D., Andre G., Fellous M., Weissenbach J. Human XX males with Y single-copy DNA fragments. Nature. 1984 Jan 12;307(5947):172–173. doi: 10.1038/307172a0. [DOI] [PubMed] [Google Scholar]
- LYON M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature. 1961 Apr 22;190:372–373. doi: 10.1038/190372a0. [DOI] [PubMed] [Google Scholar]
- Lee M. G., Nurse P. Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature. 1987 May 7;327(6117):31–35. doi: 10.1038/327031a0. [DOI] [PubMed] [Google Scholar]
- Magenis R. E., Webb M. J., McKean R. S., Tomar D., Allen L. J., Kammer H., Van Dyke D. L., Lovrien E. Translocation(X;Y)(p22.33;p11.2) in XX males: etiology of male phenotype. Hum Genet. 1982;62(3):271–276. doi: 10.1007/BF00333535. [DOI] [PubMed] [Google Scholar]
- Page D. C. Sex reversal: deletion mapping the male-determining function of the human Y chromosome. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):229–235. doi: 10.1101/sqb.1986.051.01.028. [DOI] [PubMed] [Google Scholar]
- Polani P. E. Pairing of X and Y chromosomes, non-inactivation of X-linked genes, and the maleness factor. Hum Genet. 1982;60(3):207–211. doi: 10.1007/BF00303003. [DOI] [PubMed] [Google Scholar]
- Pritchard C. A., Goodfellow P. J., Goodfellow P. N. Mapping the limits of the human pseudoautosomal region and a candidate sequence for the male-determining gene. Nature. 1987 Jul 16;328(6127):273–275. doi: 10.1038/328273a0. [DOI] [PubMed] [Google Scholar]
- Simmler M. C., Rouyer F., Vergnaud G., Nyström-Lahti M., Ngo K. Y., de la Chapelle A., Weissenbach J. Pseudoautosomal DNA sequences in the pairing region of the human sex chromosomes. Nature. 1985 Oct 24;317(6039):692–697. doi: 10.1038/317692a0. [DOI] [PubMed] [Google Scholar]
- Singh R. P., Carr D. H. The anatomy and histology of XO human embryos and fetuses. Anat Rec. 1966 Jul;155(3):369–383. doi: 10.1002/ar.1091550309. [DOI] [PubMed] [Google Scholar]
- Speed R. M. Oocyte development in XO foetuses of man and mouse: the possible role of heterologous X-chromosome pairing in germ cell survival. Chromosoma. 1986;94(2):115–124. doi: 10.1007/BF00286989. [DOI] [PubMed] [Google Scholar]
- TURPIN R., LEJEUNE J., LAFOURCADE J., GAUTIER M. Aberrations chromosomiques et maladies humaines; la polydysspondylle à 45 chromosomes. C R Hebd Seances Acad Sci. 1959 Jun 22;248(25):3636–3638. [PubMed] [Google Scholar]
- Vergnaud G., Page D. C., Simmler M. C., Brown L., Rouyer F., Noel B., Botstein D., de la Chapelle A., Weissenbach J. A deletion map of the human Y chromosome based on DNA hybridization. Am J Hum Genet. 1986 Feb;38(2):109–124. [PMC free article] [PubMed] [Google Scholar]
- de la Chapelle A., Tippett P. A., Wetterstrand G., Page D. Genetic evidence of X-Y interchange in a human XX male. Nature. 1984 Jan 12;307(5947):170–171. doi: 10.1038/307170a0. [DOI] [PubMed] [Google Scholar]