Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1988 Mar;42(3):506–515.

Multifactorial analysis of family data ascertained through truncation: a comparative evaluation of two methods of statistical inference.

D C Rao 1, R Wette 1, W J Ewens 1
PMCID: PMC1715156  PMID: 3348215

Abstract

When family data are ascertained through single selection based on truncation, a prevailing method of analysis is to condition the likelihood function on the proband's actual phenotypic value. An alternative method conditions the likelihood function on the event that the proband's measurement lies in the truncation region. Both methods are contrasted here by using Monte Carlo simulations; identical sets of data were analyzed using both methods. The results suggest that, under either method, (1) parameter estimates are nearly unbiased and (2) likelihood-ratio tests of null hypotheses are approximately distributed as chi 2. However, conditioning on the proband's actual phenotypic value yields considerably less efficient estimates and reduced power for hypothesis tests. A corresponding result also holds under complete ascertainment. It is argued, therefore, that whenever sufficient information is available on the nature of truncation, the alternative approach should be used.

Full text

PDF
506

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaty T. H., Liang K. Y. Robust inference for variance components models in families ascertained through probands: I. Conditioning on proband's phenotype. Genet Epidemiol. 1987;4(3):203–210. doi: 10.1002/gepi.1370040305. [DOI] [PubMed] [Google Scholar]
  2. Boehnke M., Lange K. Ascertainment and goodness of fit of variance component models for pedigree data. Prog Clin Biol Res. 1984;147:173–192. [PubMed] [Google Scholar]
  3. Cannings C., Thompson E. A. Ascertainment in the sequential sampling of pedigrees. Clin Genet. 1977 Oct;12(4):208–212. doi: 10.1111/j.1399-0004.1977.tb00928.x. [DOI] [PubMed] [Google Scholar]
  4. Dadone M. M., Hasstedt S. J., Hunt S. C., Smith J. B., Ash K. O., Williams R. R. Genetic analysis of sodium-lithium countertransport in 10 hypertension-prone kindreds. Am J Med Genet. 1984 Mar;17(3):565–577. doi: 10.1002/ajmg.1320170304. [DOI] [PubMed] [Google Scholar]
  5. Glueck C. J., Fallat R. W., Millett F., Gartside P., Elston R. C., Go R. C. Familial hyper-alpha-lipoproteinemia: studies in eighteen kindreds. Metabolism. 1975 Nov;24(11):1243–1265. doi: 10.1016/0026-0495(75)90063-3. [DOI] [PubMed] [Google Scholar]
  6. Gulbrandsen C. L., Morton N. E., Rhoads G. G., Kagan A., Lew R. Behavioral, social, and physiological determinants of lipoprotein concentrations. Soc Biol. 1977 Winter;24(4):289–293. doi: 10.1080/19485565.1977.9988299. [DOI] [PubMed] [Google Scholar]
  7. Hopper J. L., Mathews J. D. Extensions to multivariate normal models for pedigree analysis. Ann Hum Genet. 1982 Oct;46(Pt 4):373–383. doi: 10.1111/j.1469-1809.1982.tb01588.x. [DOI] [PubMed] [Google Scholar]
  8. Janus E. D., Phillips N. T., Carrell R. W. Smoking, lung function, and alpha 1-antitrypsin deficiency. Lancet. 1985 Jan 19;1(8421):152–154. doi: 10.1016/s0140-6736(85)91916-6. [DOI] [PubMed] [Google Scholar]
  9. McGue M., Wette R., Rao D. C. A Monte Carlo evaluation of three statistical methods used in path analysis. Genet Epidemiol. 1987;4(2):129–155. doi: 10.1002/gepi.1370040207. [DOI] [PubMed] [Google Scholar]
  10. Rao D. C., Wette R. Nonrandom sampling in genetic epidemiology: maximum likelihood methods for multifactorial analysis of quantitative data ascertained through truncation. Genet Epidemiol. 1987;4(5):357–376. doi: 10.1002/gepi.1370040505. [DOI] [PubMed] [Google Scholar]
  11. Simpson J. M., Brennan P. J., McGilchrist C. A., Blacket R. B. Estimation of environmental and genetic components of quantitative traits with application to serum cholesterol levels. Am J Hum Genet. 1981 Mar;33(2):293–299. [PMC free article] [PubMed] [Google Scholar]
  12. Third J. L., Montag J., Flynn M., Freidel J., Laskarzewski P., Glueck C. J. Primary and familial hypoalphalipoproteinemia. Metabolism. 1984 Feb;33(2):136–146. doi: 10.1016/0026-0495(84)90126-4. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES