Abstract
Likelihood analysis was used to test for evidence that an allele at a major locus elevates rates of sodium-lithium countertransport (SLC) in a sample of 1,989 members of 89 Utah pedigrees. The pedigrees were ascertained through two or three sibs who died of stroke before age 74 years (stroke pedigrees), through hypertensive and normotensive probands of the Salt Lake Center of the Hypertension Detection and Followup Program (HDFP pedigrees), or through men who suffered a myocardial infarction before age 55 years (coronary pedigrees). Major-locus inheritance could be rejected in the total sample; transmission probability estimates of tau1 = .972, tau2 = .520, tau3 = .185 differed significantly from Mendelian transmission specified by tau1 = 1, tau2 = 1/2, tau3 = 0. However, heterogeneity between ascertainment groups was significant (chi2(18) = 40.06, P less than .01) and justified analysis within subsets of the sample. In the stroke pedigrees, evidence of major-locus inheritance was not found; polygenic heritability was estimated as .647. In the HDFP pedigrees, estimates of tau1 = .987, tau2 = .430, tau3 = .506 differed significantly from Mendelian transmission; the inferred model consisted of a mixture of two distributions incompatible with both Mendelian and environmental transmission but compatible with polygenic inheritance within distributions. In the coronary pedigrees, the hypothesis of Mendelian transmission could not be rejected. In the coronary pedigrees, the evidence supported an incompletely recessive allele with a frequency of .227 which elevated the level of SLC to a mean of .530 mmol/liter RBC/h.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF![14](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1162/1715289/b1f78ba77e09/ajhg00117-0020.png)
![15](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1162/1715289/9ad01b20483f/ajhg00117-0021.png)
![16](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1162/1715289/91183081891b/ajhg00117-0022.png)
![17](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1162/1715289/9281cf675182/ajhg00117-0023.png)
![18](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1162/1715289/031b747ca6bb/ajhg00117-0024.png)
![19](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1162/1715289/27236e99b184/ajhg00117-0025.png)
![20](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1162/1715289/79a4e998feb6/ajhg00117-0026.png)
![21](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1162/1715289/d53f704cb908/ajhg00117-0027.png)
![22](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1162/1715289/fc4310082efc/ajhg00117-0028.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beuckelmann D., Erdmann E. Exogenous factors influencing the human erythrocyte sodium-lithium countertransport system. Eur J Clin Invest. 1984 Oct;14(5):392–397. doi: 10.1111/j.1365-2362.1984.tb01200.x. [DOI] [PubMed] [Google Scholar]
- Blaustein M. P. Sodium transport and hypertension. Where are we going? Hypertension. 1984 Jul-Aug;6(4):445–453. doi: 10.1161/01.hyp.6.4.445. [DOI] [PubMed] [Google Scholar]
- Boerwinkle E., Turner S. T., Sing C. F. The role of the genetics of sodium lithium countertransport in the determination of blood pressure variability in the population at large. Prog Clin Biol Res. 1984;165:479–507. [PubMed] [Google Scholar]
- Boerwinkle E., Turner S. T., Weinshilboum R., Johnson M., Richelson E., Sing C. F. Analysis of the distribution of erythrocyte sodium lithium countertransport in a sample representative of the general population. Genet Epidemiol. 1986;3(5):365–378. doi: 10.1002/gepi.1370030509. [DOI] [PubMed] [Google Scholar]
- Boyle C. R., Elston R. C. Multifactorial genetic models for quantitative traits in humans. Biometrics. 1979 Mar;35(1):55–68. [PubMed] [Google Scholar]
- Canessa M., Adragna N., Solomon H. S., Connolly T. M., Tosteson D. C. Increased sodium-lithium countertransport in red cells of patients with essential hypertension. N Engl J Med. 1980 Apr 3;302(14):772–776. doi: 10.1056/NEJM198004033021403. [DOI] [PubMed] [Google Scholar]
- Corrocher R., Steinmayr M., Ruzzenente O., Brugnara C., Bertinato L., Mazzi M., Furri C., Bonfanti F., De Sandre G. Elevation of red cell sodium-lithium countertransport in hyperlipidemias. Life Sci. 1985 Feb 18;36(7):649–655. doi: 10.1016/0024-3205(85)90169-9. [DOI] [PubMed] [Google Scholar]
- Dadone M. M., Hasstedt S. J., Hunt S. C., Smith J. B., Ash K. O., Williams R. R. Genetic analysis of sodium-lithium countertransport in 10 hypertension-prone kindreds. Am J Med Genet. 1984 Mar;17(3):565–577. doi: 10.1002/ajmg.1320170304. [DOI] [PubMed] [Google Scholar]
- Dorus E., Cox N. J., Gibbons R. D., Shaughnessy R., Pandey G. N., Cloninger C. R. Lithium ion transport and affective disorders within families of bipolar patients. Identification of a major gene locus. Arch Gen Psychiatry. 1983 May;40(5):545–552. doi: 10.1001/archpsyc.1983.01790050071009. [DOI] [PubMed] [Google Scholar]
- Egeland J. A., Kidd J. R., Frazer A., Kidd K. K., Neuhauser V. I. Amish study, V: Lithium-sodium countertransport and catechol O-methyltransferase in pedigrees of bipolar probands. Am J Psychiatry. 1984 Sep;141(9):1049–1054. doi: 10.1176/ajp.141.9.1049. [DOI] [PubMed] [Google Scholar]
- Elston R. C., Stewart J. A general model for the genetic analysis of pedigree data. Hum Hered. 1971;21(6):523–542. doi: 10.1159/000152448. [DOI] [PubMed] [Google Scholar]
- Hasstedt S. J. A mixed-model likelihood approximation on large pedigrees. Comput Biomed Res. 1982 Jun;15(3):295–307. doi: 10.1016/0010-4809(82)90064-7. [DOI] [PubMed] [Google Scholar]
- Hasstedt S. J., Ash K. O., Williams R. R. A re-examination of major locus hypotheses for high density lipoprotein cholesterol level using 2,170 persons screened in 55 Utah pedigrees. Am J Med Genet. 1986 May;24(1):57–67. doi: 10.1002/ajmg.1320240108. [DOI] [PubMed] [Google Scholar]
- Hasstedt S. J., Kuida H., Ash K. O., Williams R. R. Effects of household sharing on high density lipoprotein and its subfractions. Genet Epidemiol. 1985;2(4):339–348. doi: 10.1002/gepi.1370020403. [DOI] [PubMed] [Google Scholar]
- Hasstedt S. J., Wu L., Williams R. R. Major locus inheritance of apolipoprotein B in Utah pedigrees. Genet Epidemiol. 1987;4(2):67–76. doi: 10.1002/gepi.1370040202. [DOI] [PubMed] [Google Scholar]
- Hilton P. J. Cellular sodium transport in essential hypertension. N Engl J Med. 1986 Jan 23;314(4):222–229. doi: 10.1056/NEJM198601233140407. [DOI] [PubMed] [Google Scholar]
- Hunt S. C., Williams R. R., Barlow G. K. A comparison of positive family history definitions for defining risk of future disease. J Chronic Dis. 1986;39(10):809–821. doi: 10.1016/0021-9681(86)90083-4. [DOI] [PubMed] [Google Scholar]
- Hunt S. C., Williams R. R., Smith J. B., Ash K. O. Associations of three erythrocyte cation transport systems with plasma lipids in Utah subjects. Hypertension. 1986 Jan;8(1):30–36. doi: 10.1161/01.hyp.8.1.30. [DOI] [PubMed] [Google Scholar]
- Kagamimori S., Naruse Y., Takata M., Fujita T., Watanabe M. Familial aggregation of red blood cell cation transport systems in Japanese families. Am J Epidemiol. 1985 Sep;122(3):386–390. doi: 10.1093/oxfordjournals.aje.a114119. [DOI] [PubMed] [Google Scholar]
- Kagamimori S., Takata M., Naruse Y., Watanabe M., Miyamoto N., Okada A. Heritability of erythrocyte Na+-Li+ countertransport in relation to essential hypertension. Clin Exp Hypertens A. 1984;6(5):951–960. doi: 10.3109/10641968409044049. [DOI] [PubMed] [Google Scholar]
- Lalouel J. M., Rao D. C., Morton N. E., Elston R. C. A unified model for complex segregation analysis. Am J Hum Genet. 1983 Sep;35(5):816–826. [PMC free article] [PubMed] [Google Scholar]
- Leppert M. F., Hasstedt S. J., Holm T., O'Connell P., Wu L., Ash O., Williams R. R., White R. A DNA probe for the LDL receptor gene is tightly linked to hypercholesterolemia in a pedigree with early coronary disease. Am J Hum Genet. 1986 Sep;39(3):300–306. [PMC free article] [PubMed] [Google Scholar]
- MORTON N. E. The detection and estimation of linkage between the genes for elliptocytosis and the Rh blood type. Am J Hum Genet. 1956 Jun;8(2):80–96. [PMC free article] [PubMed] [Google Scholar]
- Maclean C. J., Morton N. E., Elston R. C., Yee S. Skewness in commingled distributions. Biometrics. 1976 Sep;32(3):695–699. [PubMed] [Google Scholar]
- Miilunpalo S., Saarinen R., Marniemi J. Red-cell sodium-potassium pump and sodium-lithium countertransport in human obesity. Re-evaluation of the methods and association in a Finnish population. Int J Obes. 1985;9(5):313–321. [PubMed] [Google Scholar]
- Moll P. P., Sing C. F., Williams R. R., Mao S. J., Kottke B. A. The genetic determination of plasma apolipoprotein A-I levels measured by radioimmunoassay: a study of high-risk pedigrees. Am J Hum Genet. 1986 Mar;38(3):361–372. [PMC free article] [PubMed] [Google Scholar]
- Morton N. E., MacLean C. J. Analysis of family resemblance. 3. Complex segregation of quantitative traits. Am J Hum Genet. 1974 Jul;26(4):489–503. [PMC free article] [PubMed] [Google Scholar]
- Ostrow D. G., Pandey G. N., Davis J. M., Hurt S. W., Tosteson D. C. A heritable disorder of lithium transport in erythrocytes of a subpopulation of manic-depressive patients. Am J Psychiatry. 1978 Sep;135(9):1070–1078. doi: 10.1176/ajp.135.9.1070. [DOI] [PubMed] [Google Scholar]
- Sempos C., Cooper R., Trevisan M., Ostrow D., Stamler J. Family history of hypertension and rates of sodium transport: absence of an association in population-based studies. Clin Exp Hypertens A. 1984;6(7):1379–1393. doi: 10.3109/10641968409039604. [DOI] [PubMed] [Google Scholar]
- Shaughnessy R., Greene S. C., Pandey G. N., Dorus E. Red-cell lithium transport and affective disorders in a multigeneration pedigree: evidence for genetic transmission of affective disorders. Biol Psychiatry. 1985 Apr;20(4):451–454. doi: 10.1016/0006-3223(85)90047-2. [DOI] [PubMed] [Google Scholar]
- Smith J. B., Ash K. O., Hunt S. C., Hentschel W. M., Sprowell W., Dadone M. M., Williams R. R. Three red cell sodium transport systems in hypertensive and normotensive Utah adults. Hypertension. 1984 Mar-Apr;6(2 Pt 1):159–166. [PubMed] [Google Scholar]
- Smith J. B., Price A. L., Williams R. R., Hentschel W. M., Sprowell W., Hunt S. C., Ash K. O. A reproducible sodium-lithium countertransport assay: the outcome of changing key laboratory parameters. Clin Chim Acta. 1982 Jul 15;122(3):327–335. doi: 10.1016/0009-8981(82)90135-8. [DOI] [PubMed] [Google Scholar]
- Turner S. T., Johnson M., Boerwinkle E., Richelson E., Taswell H. F., Sing C. F. Sodium-lithium countertransport and blood pressure in healthy blood donors. Hypertension. 1985 Nov-Dec;7(6 Pt 1):955–962. doi: 10.1161/01.hyp.7.6.955. [DOI] [PubMed] [Google Scholar]
- Williams R. R., Hasstedt S. J., Wilson D. E., Ash K. O., Yanowitz F. F., Reiber G. E., Kuida H. Evidence that men with familial hypercholesterolemia can avoid early coronary death. An analysis of 77 gene carriers in four Utah pedigrees. JAMA. 1986 Jan 10;255(2):219–224. [PubMed] [Google Scholar]
- Williams R. R., Hunt S. C., Kuida H., Smith J. B., Ash K. O. Sodium-lithium countertransport in erythrocytes of hypertension prone families in Utah. Am J Epidemiol. 1983 Sep;118(3):338–344. doi: 10.1093/oxfordjournals.aje.a113640. [DOI] [PubMed] [Google Scholar]
- Williams R. R., Skolnick M., Carmelli D., Maness A. T., Hunt S. C., Hasstedt S., Reiber G. E., Jones R. K. Utah pedigree studies: design and preliminary data for premature male CHD deaths. Prog Clin Biol Res. 1979;32:711–729. [PubMed] [Google Scholar]
- Woods J. W., Falk R. J., Pittman A. W., Klemmer P. J., Watson B. S., Namboodiri K. Increased red-cell sodium-lithium countertransport in normotensive sons of hypertensive parents. N Engl J Med. 1982 Mar 11;306(10):593–595. doi: 10.1056/NEJM198203113061007. [DOI] [PubMed] [Google Scholar]
- Woods J. W., Watson B. S. Red-cell sodium-lithium countertransport in sons of normotensive and hypertensive parents: a follow-up study. N Engl J Med. 1984 May 3;310(18):1191–1191. doi: 10.1056/NEJM198405033101820. [DOI] [PubMed] [Google Scholar]
- Worley R. J., Hentschel W. M., Cormier C., Nutting S., Pead G., Zelenkov K., Smith J. B., Ash K. O., Williams R. R. Increased sodium-lithium countertransport in erythrocytes of pregnant women. N Engl J Med. 1982 Aug 12;307(7):412–416. doi: 10.1056/NEJM198208123070706. [DOI] [PubMed] [Google Scholar]