Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1990 Jan;34(1):117–120. doi: 10.1128/aac.34.1.117

Imipenem resistance in Bacteroides distasonis mediated by a novel beta-lactamase.

S Hurlbut 1, G J Cuchural 1, F P Tally 1
PMCID: PMC171531  PMID: 2327745

Abstract

Imipenem is a highly active drug against the Bacteroides fragilis group of organisms. On the basis of a nationwide survey of over 500 isolates, it was found that the frequency of imipenem resistance was less than 0.1%. We have a highly resistant Bacteroides distasonis isolate, TAL7860, for which the following MICs (micrograms per milliliter) were determined by agar dilution: cefoxitin, greater than 128; moxalactam, greater than 128; piperacillin, greater than 128; imipenem, 16; and SCH34343, 16. Resistance was shown to involve both a beta-lactamase and an outer membrane permeability barrier. beta-Lactamase kinetics studies with several beta-lactams, including imipenem, revealed similar hydrolytic efficiency in comparison with those found for the B. fragilis strains. An imipenem outer membrane permeability barrier was detected for TAL7860, which was approximately sixfold more effective for B. fragilis TAL3636 and TAL2480. Significant inhibition of nitrocefin destruction was also shown with sulbactam and clavulanic acid at 10 mumol and dithiothreitol at 10 mM. No inhibition was seen with 10 mM EDTA. Differences in physicochemical properties and inhibition studies suggest that this beta-lactamase is different from the imipenem-inactivating metallo-beta-lactamase previously described in B. fragilis. We demonstrated a significant permeability barrier to clavulanic acid and sulbactam, which resulted in loss of synergism between these clinically employed beta-lactamase inhibitors and beta-lactam drugs. The novel beta-lactamase activity in conjunction with a limited permeability in TAL7860 resulted in resistance to all commonly employed beta-lactams, including the newest and most potent beta-lactam drugs.

Full text

PDF
117

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bicknell R., Emanuel E. L., Gagnon J., Waley S. G. The production and molecular properties of the zinc beta-lactamase of Pseudomonas maltophilia IID 1275. Biochem J. 1985 Aug 1;229(3):791–797. doi: 10.1042/bj2290791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cuchural G. J., Hurlbut S., Malamy M. H., Tally F. P. Permeability to beta-lactams in Bacteroides fragilis. J Antimicrob Chemother. 1988 Dec;22(6):785–790. doi: 10.1093/jac/22.6.785. [DOI] [PubMed] [Google Scholar]
  3. Cuchural G. J., Jr, Malamy M. H., Tally F. P. Beta-lactamase-mediated imipenem resistance in Bacteroides fragilis. Antimicrob Agents Chemother. 1986 Nov;30(5):645–648. doi: 10.1128/aac.30.5.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cuchural G. J., Jr, Tally F. P., Jacobus N. V., Aldridge K., Cleary T., Finegold S. M., Hill G., Iannini P., O'Keefe J. P., Pierson C. Susceptibility of the Bacteroides fragilis group in the United States: analysis by site of isolation. Antimicrob Agents Chemother. 1988 May;32(5):717–722. doi: 10.1128/aac.32.5.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cuchural G. J., Jr, Tally F. P., Jacobus N. V., Gorbach S. L., Aldridge K., Cleary T., Finegold S. M., Hill G., Iannini P., O'Keefe J. P. Antimicrobial susceptibilities of 1,292 isolates of the Bacteroides fragilis group in the United States: comparison of 1981 with 1982. Antimicrob Agents Chemother. 1984 Aug;26(2):145–148. doi: 10.1128/aac.26.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cuchural G. J., Jr, Tally F. P., Jacobus N. V., Marsh P. K., Mayhew J. W. Cefoxitin inactivation by Bacteroides fragilis. Antimicrob Agents Chemother. 1983 Dec;24(6):936–940. doi: 10.1128/aac.24.6.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ouellette M., Bissonnette L., Roy P. H. Precise insertion of antibiotic resistance determinants into Tn21-like transposons: nucleotide sequence of the OXA-1 beta-lactamase gene. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7378–7382. doi: 10.1073/pnas.84.21.7378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Saino Y., Kobayashi F., Inoue M., Mitsuhashi S. Purification and properties of inducible penicillin beta-lactamase isolated from Pseudomonas maltophilia. Antimicrob Agents Chemother. 1982 Oct;22(4):564–570. doi: 10.1128/aac.22.4.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sato K., Fujii T., Okamoto R., Inoue M., Mitsuhashi S. Biochemical properties of beta-lactamase produced by Flavobacterium odoratum. Antimicrob Agents Chemother. 1985 Apr;27(4):612–614. doi: 10.1128/aac.27.4.612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Tally F. P., Cuchural G. J., Jacobus N. V., Gorbach S. L., Aldridge K. E., Cleary T. J., Finegold S. M., Hill G. B., Iannini P. B., McCloskey R. V. Susceptibility of the Bacteroides fragilis group in the United States in 1981. Antimicrob Agents Chemother. 1983 Apr;23(4):536–540. doi: 10.1128/aac.23.4.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Vu H., Nikaido H. Role of beta-lactam hydrolysis in the mechanism of resistance of a beta-lactamase-constitutive Enterobacter cloacae strain to expanded-spectrum beta-lactams. Antimicrob Agents Chemother. 1985 Mar;27(3):393–398. doi: 10.1128/aac.27.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Zimmermann W., Rosselet A. Function of the outer membrane of Escherichia coli as a permeability barrier to beta-lactam antibiotics. Antimicrob Agents Chemother. 1977 Sep;12(3):368–372. doi: 10.1128/aac.12.3.368. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES