Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1988 Sep;43(3):230–238.

Role of genetic polymorphism of human plasma paraoxonase/arylesterase in hydrolysis of the insecticide metabolites chlorpyrifos oxon and paraoxon.

C E Furlong 1, R J Richter 1, S L Seidel 1, A G Motulsky 1
PMCID: PMC1715392  PMID: 2458038

Abstract

Plasma paraoxonase is a polymorphic enzyme that hydrolyzes paraoxon, the neurotoxic, active metabolite of the insecticide parathion. This enzyme is specified by at least two alleles with frequencies of about .7 and .3 among Caucasoid populations. A specific assay was developed that measured the activity of human plasma paraoxonase without interference from serum albumin which contributes significantly to the hydrolytic breakdown of paraoxon at the high pH values used in many previous assays. There was an 11-fold variation in paraoxonase activities, and the population distribution was at least bimodal. However, this specific assay did not improve the discrimination between the three genetic classes: (1) homozygotes for the low-activity allele, (2) heterozygotes, and (3) homozygotes for the high-activity allele. Chlorpyrifos oxon--the neurotoxic metabolite of the organophosphorus insecticide chlorpyrifos (Dursban)--was hydrolyzed by the same plasma fraction that hydrolyzed paraoxon. There was only four- to fivefold variability in enzyme activity, and the population distribution was unimodal. Homozygotes for low paraoxonase activity ranged over almost the entire spectrum of chlorpyrifos oxonase activity. Possible differences in susceptibility to chlorpyrifos toxicity therefore are unlikely to be predicted by the paraoxonase genotype alone. The ratio of paraoxonase over that of chlorpyrifos oxonase provided an excellent method for genetic typing of the paraoxonase polymorphism, as did the substitution of phenylacetate for chlorpyrifos as the substrate.

Full text

PDF
230

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaudet A., Bowcock A., Buchwald M., Cavalli-Sforza L., Farrall M., King M. C., Klinger K., Lalouel J. M., Lathrop G., Naylor S. Linkage of cystic fibrosis to two tightly linked DNA markers: joint report from a collaborative study. Am J Hum Genet. 1986 Dec;39(6):681–693. [PMC free article] [PubMed] [Google Scholar]
  2. Carro-Ciampi G., Kadar D., Kalow W. Distribution of serum paraoxon hydrolyzing activities in a Canadian population. Can J Physiol Pharmacol. 1981 Aug;59(8):904–907. doi: 10.1139/y81-138. [DOI] [PubMed] [Google Scholar]
  3. Eckerson H. W., Romson J., Wyte C., La Du B. N. The human serum paraoxonase polymorphism: identification of phenotypes by their response to salts. Am J Hum Genet. 1983 Mar;35(2):214–227. [PMC free article] [PubMed] [Google Scholar]
  4. Eckerson H. W., Wyte C. M., La Du B. N. The human serum paraoxonase/arylesterase polymorphism. Am J Hum Genet. 1983 Nov;35(6):1126–1138. [PMC free article] [PubMed] [Google Scholar]
  5. Eiberg H., Mohr J. Genetics of paraoxonase. Ann Hum Genet. 1981 Oct;45(Pt 4):323–330. doi: 10.1111/j.1469-1809.1981.tb00345.x. [DOI] [PubMed] [Google Scholar]
  6. Eiberg H., Mohr J., Schmiegelow K., Nielsen L. S., Williamson R. Linkage relationships of paraoxonase (PON) with other markers: indication of PON-cystic fibrosis synteny. Clin Genet. 1985 Oct;28(4):265–271. doi: 10.1111/j.1399-0004.1985.tb00400.x. [DOI] [PubMed] [Google Scholar]
  7. Geldmacher-v Mallinckrodt M., Hommel G., Dumbach J. On the genetics of the human serum paraoxonase (EC 3.1.1.2). Hum Genet. 1979 Sep;50(3):313–326. doi: 10.1007/BF00399398. [DOI] [PubMed] [Google Scholar]
  8. Geldmacher-von Mallinck, Rabast U., Lindorf H. H. Unterschiedliche Reaktion menschlicher Serum-Cholinesterasen mit E 600 (O,O-Diäthyl-O-(p-nitrophenyl)-phosphat) Arch Toxikol. 1969;24(3):223–228. [PubMed] [Google Scholar]
  9. KALOW W., STARON N. On distribution and inheritance of atypical forms of human serum cholinesterase, as indicated by dibucaine numbers. Can J Biochem Physiol. 1957 Dec;35(12):1305–1320. [PubMed] [Google Scholar]
  10. Kitchen B. J., Masters C. J., Winzor D. J. Effects of lipid removal on the molecular size and kinetic properties of bovine plasma arylesterase. Biochem J. 1973 Sep;135(1):93–99. doi: 10.1042/bj1350093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Krisch K. Enzymatische Hydrolyse von Diäthyl-p-nitrophenylphosphat (E 600) durch menschlichen Serum. Z Klin Chem Klin Biochem. 1968 Jan;6(1):41–45. [PubMed] [Google Scholar]
  12. La Du B. N., Piko J. I., Eckerson H. W., Vincent-Viry M., Siest G. An improved method for phenotyping individuals for the human serum paraoxonase arylesterase polymorphism. Ann Biol Clin (Paris) 1986;44(4):369–372. [PubMed] [Google Scholar]
  13. Mueller R. F., Hornung S., Furlong C. E., Anderson J., Giblett E. R., Motulsky A. G. Plasma paraoxonase polymorphism: a new enzyme assay, population, family, biochemical, and linkage studies. Am J Hum Genet. 1983 May;35(3):393–408. [PMC free article] [PubMed] [Google Scholar]
  14. Nielsen A., Eiberg H., Fenger K., Mohr J. Number of "high genes" involved in determining the activity of paraoxonase. Clin Genet. 1986 Jul;30(1):41–49. doi: 10.1111/j.1399-0004.1986.tb00567.x. [DOI] [PubMed] [Google Scholar]
  15. Nolan R. J., Rick D. L., Freshour N. L., Saunders J. H. Chlorpyrifos: pharmacokinetics in human volunteers. Toxicol Appl Pharmacol. 1984 Mar 30;73(1):8–15. doi: 10.1016/0041-008x(84)90046-2. [DOI] [PubMed] [Google Scholar]
  16. Ortigoza-Ferado J., Richter R. J., Hornung S. K., Motulsky A. G., Furlong C. E. Paraoxon hydrolysis in human serum mediated by a genetically variable arylesterase and albumin. Am J Hum Genet. 1984 Mar;36(2):295–305. [PMC free article] [PubMed] [Google Scholar]
  17. Playfer J. R., Eze L. C., Bullen M. F., Evans D. A. Genetic polymorphism and interethnic variability of plasma paroxonase activity. J Med Genet. 1976 Oct;13(5):337–342. doi: 10.1136/jmg.13.5.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sultatos L. G., Minor L. D., Murphy S. D. Metabolic activation of phosphorothioate pesticides: role of the liver. J Pharmacol Exp Ther. 1985 Mar;232(3):624–628. [PubMed] [Google Scholar]
  19. Zech R., Zürcher K. Organophosphate splitting serum enzymes in different mammals. Comp Biochem Physiol B. 1974 Jul 15;48(3):427–433. doi: 10.1016/0305-0491(74)90277-6. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES