Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1988 Nov;43(5):774–780.

Familial resemblance of plasma angiotensin-converting enzyme level: the Nancy Study.

F Cambien 1, F Alhenc-Gelas 1, B Herbeth 1, J L Andre 1, R Rakotovao 1, M F Gonzales 1, J Allegrini 1, C Bloch 1
PMCID: PMC1715523  PMID: 2847529

Abstract

Plasma angiotensin I-converting enzyme (ACE) activity has been measured in a sample of 87 healthy families participating in a study of cardiovascular risk factors. The mean +/- SD levels of plasma ACE were 34.1 +/- 10.7, 30.7 +/- 10.4 and 43.1 +/- 17.2 units/liter in fathers (n = 87), mothers (n = 87) and offspring (n = 169), respectively. Plasma ACE was uncorrelated with age, height, weight, or blood pressure in the parents, but a negative correlation with age was observed in offspring (r = -.32). The age-adjusted familial correlations of plasma ACE were .038, .166, .323 and .303 for spouses, father-offspring, mother-offspring, and siblings, respectively. The results of the genetic analysis suggest that a major gene may affect the interindividual variability of plasma ACE, with different codominant effects in parents and offspring. According to this model, the major gene effect accounts for 4.8, 4.0, and 10.8 units/liter of the overall mean and for 29%, 29% and 75% of the variance of age-adjusted ACE in fathers, mothers, and offspring, respectively. The estimate of the probability of the less frequent allele is .26, and the major gene effect is approximately twice as great in high homozygotes than in heterozygotes and in offspring than in parents. The results of this study demonstrate the occurrence of a familial resemblance of plasma ACE activity in healthy families and suggest that this observation can be explained by the segregation of a major gene.

Full text

PDF
774

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alhenc-Gelas F., Weare J. A., Johnson R. L., Jr, Erdös E. G. Measurement of human converting enzyme level by direct radioimmunoassay. J Lab Clin Med. 1983 Jan;101(1):83–96. [PubMed] [Google Scholar]
  2. Bonney G. E. On the statistical determination of major gene mechanisms in continuous human traits: regressive models. Am J Med Genet. 1984 Aug;18(4):731–749. doi: 10.1002/ajmg.1320180420. [DOI] [PubMed] [Google Scholar]
  3. Das M., Hartley J. L., Soffers R. L. Serum angiotensin-converting enzyme. Isolation and relationship to the pulmonary enzyme. J Biol Chem. 1977 Feb 25;252(4):1316–1319. [PubMed] [Google Scholar]
  4. Donner A., Koval J. J. A multivariate analysis of family data. Am J Epidemiol. 1981 Jul;114(1):149–154. doi: 10.1093/oxfordjournals.aje.a113162. [DOI] [PubMed] [Google Scholar]
  5. Dux S., Aron N., Boner G., Carmel A., Yaron A., Rosenfeld J. B. Serum angiotensin converting enzyme activity in normal adults and patients with different types of hypertension. Isr J Med Sci. 1984 Dec;20(12):1138–1142. [PubMed] [Google Scholar]
  6. Hayes L. W., Goguen C. A., Ching S. F., Slakey L. L. Angiotensin-converting enzyme: accumulation in medium from cultured endothelial cells. Biochem Biophys Res Commun. 1978 Jun 29;82(4):1147–1153. doi: 10.1016/0006-291x(78)90306-6. [DOI] [PubMed] [Google Scholar]
  7. Lieberman J. Elevation of serum angiotensin-converting-enzyme (ACE) level in sarcoidosis. Am J Med. 1975 Sep;59(3):365–372. doi: 10.1016/0002-9343(75)90395-2. [DOI] [PubMed] [Google Scholar]
  8. Nakamura Y., Takeda T., Ishii M., Nishiyama K., Yamakada M., Hirata Y., Kimura K., Murao S. Elevation of serum angiotensin-converting enzyme activity in patients with hyperthyroidism. J Clin Endocrinol Metab. 1982 Nov;55(5):931–934. doi: 10.1210/jcem-55-5-931. [DOI] [PubMed] [Google Scholar]
  9. Neels H. M., Scharpé S. L., van Sande M. E., Verkerk R. M., Van Acker K. J. Improved micromethod for assay of serum angiotensin converting enzyme. Clin Chem. 1982 Jun;28(6):1352–1355. [PubMed] [Google Scholar]
  10. Okabe T., Fujisawa M., Yotsumoto H., Takaku F., Lanzillo J. J., Fanburg B. L. Familial elevation of serum angiotensin converting enzyme. Q J Med. 1985 Apr;55(216):55–61. [PubMed] [Google Scholar]
  11. Rodriguez G. E., Shin B. C., Abernathy R. S., Kendig E. L., Jr Serum angiotensin-converting enzyme activity in normal children and in those with sarcoidosis. J Pediatr. 1981 Jul;99(1):68–72. doi: 10.1016/s0022-3476(81)80959-6. [DOI] [PubMed] [Google Scholar]
  12. SKEGGS L. T., Jr, KAHN J. R., SHUMWAY N. P. The preparation and function of the hypertensin-converting enzyme. J Exp Med. 1956 Mar 1;103(3):295–299. doi: 10.1084/jem.103.3.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Westgren U., Burger A., Ingemansson S., Melander A., Tibblin S., Wåhlin E. Blood levels of 3,5,3'-triiodothyronine and thyroxine: differences between children, adults, and elderly subjects. Acta Med Scand. 1976;200(6):493–495. doi: 10.1111/j.0954-6820.1976.tb08271.x. [DOI] [PubMed] [Google Scholar]
  14. Yang H. Y., Erdös E. G., Levin Y. A dipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin. Biochim Biophys Acta. 1970 Aug 21;214(2):374–376. doi: 10.1016/0005-2795(70)90017-6. [DOI] [PubMed] [Google Scholar]
  15. Yasui T., Alhenc-Gelas F., Daufresne S. Immunoreactive angiotensin I converting enzyme in plasma from normal subjects. Comparison with enzyme activity. Eur Heart J. 1983 Nov;4 (Suppl G):27–29. doi: 10.1093/eurheartj/4.suppl_g.27. [DOI] [PubMed] [Google Scholar]
  16. Yotsumoto H., Imai Y., Kuzuya N., Uchimura H., Matsuzaki F. Increased levels of serum angiotensin-converting enzyme activity in hyperthyroidism. Ann Intern Med. 1982 Mar;96(3):326–328. doi: 10.7326/0003-4819-96-3-326. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES