Abstract
A 1.6-kb cDNA for human liver branched-chain acyltransferase [E2b] was placed in a transcription vector under the control of the SP6 promoter. In vitro translation of transcripts from this vector produced a pre-E2b fragment of Mr 39,000. Following import into mitochondria, this protein was processed to a protein with an Mr of 36,000. The processed protein was fully protected from trypsin digestion. Import and processing did not occur in the presence of rhodamine 123 or carbonyl cyanide m-chlorophenyl hydrazone, suggesting that membrane potential and coupled respiration were required. Uptake and processing were species and tissue independent, since both mouse-liver and human-lymphoblast mitochondria converted the human pre-E2b protein fragment. Mitochondria from patient cells that lack E2b through an inherited defect were able to import and process the in vitro-made protein, suggesting that the inherited defect was in the gene for E2b and not in the organelle-structure function. This system now provides additional methods for investigation of mechanisms responsible for the human inherited disorders affecting the branched-chain alpha-ketoacid dehydrogenase complex.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Behra R., Christen P. In vitro import into mitochondria of the precursor of mitochondrial aspartate aminotransferase. J Biol Chem. 1986 Jan 5;261(1):257–263. [PubMed] [Google Scholar]
- Chen W. J., Douglas M. G. Phosphodiester bond cleavage outside mitochondria is required for the completion of protein import into the mitochondrial matrix. Cell. 1987 Jun 5;49(5):651–658. doi: 10.1016/0092-8674(87)90541-1. [DOI] [PubMed] [Google Scholar]
- Chu T. W., Grant P. M., Strauss A. W. The role of arginine residues in the rat mitochondrial malate dehydrogenase transit peptide. J Biol Chem. 1987 Sep 15;262(26):12806–12811. [PubMed] [Google Scholar]
- Danner D. J., Armstrong N., Heffelfinger S. C., Sewell E. T., Priest J. H., Elsas L. J. Absence of branched chain acyl-transferase as a cause of maple syrup urine disease. J Clin Invest. 1985 Mar;75(3):858–860. doi: 10.1172/JCI111783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas M. G., McCammon M. T., Vassarotti A. Targeting proteins into mitochondria. Microbiol Rev. 1986 Jun;50(2):166–178. doi: 10.1128/mr.50.2.166-178.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenawalt J. W. The isolation of outer and inner mitochondrial membranes. Methods Enzymol. 1974;31:310–323. doi: 10.1016/0076-6879(74)31033-6. [DOI] [PubMed] [Google Scholar]
- Heffelfinger S. C., Sewell E. T., Danner D. J. Antibodies to bovine liver branched-chain 2-oxo acid dehydrogenase cross-react with this enzyme complex from other tissues and species. Biochem J. 1983 Aug 1;213(2):339–344. doi: 10.1042/bj2130339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hummel K. B., Litwer S., Bradford A. P., Aitken A., Danner D. J., Yeaman S. J. Nucleotide sequence of a cDNA for branched chain acyltransferase with analysis of the deduced protein structure. J Biol Chem. 1988 May 5;263(13):6165–6168. [PubMed] [Google Scholar]
- Indo Y., Kitano A., Endo F., Akaboshi I., Matsuda I. Altered kinetic properties of the branched-chain alpha-keto acid dehydrogenase complex due to mutation of the beta-subunit of the branched-chain alpha-keto acid decarboxylase (E1) component in lymphoblastoid cells derived from patients with maple syrup urine disease. J Clin Invest. 1987 Jul;80(1):63–70. doi: 10.1172/JCI113064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lau K. S., Griffin T. A., Hu C. W., Chuang D. T. Conservation of primary structure in the lipoyl-bearing and dihydrolipoyl dehydrogenase binding domains of mammalian branched-chain alpha-keto acid dehydrogenase complex: molecular cloning of human and bovine transacylase (E2) cDNAs. Biochemistry. 1988 Mar 22;27(6):1972–1981. doi: 10.1021/bi00406a025. [DOI] [PubMed] [Google Scholar]
- Litwer S., Danner D. J. Identification of a cDNA clone in lambda gt11 for the transacylase component of branched chain ketoacid dehydrogenase. Biochem Biophys Res Commun. 1985 Sep 16;131(2):961–967. doi: 10.1016/0006-291x(85)91333-6. [DOI] [PubMed] [Google Scholar]
- Mori M., Miura S., Morita T., Takiguchi M., Tatibana M. Synthesis, intracellular transport and processing of mitochondrial urea cycle enzymes. Adv Enzyme Regul. 1983;21:121–132. doi: 10.1016/0065-2571(83)90011-0. [DOI] [PubMed] [Google Scholar]
- Ono H., Tuboi S. Translocation of proteins into rat liver mitochondria. The precursor polypeptides of a large subunit of succinate dehydrogenase and ornithine aminotransferase and their imports into their own locations of mitochondria. Eur J Biochem. 1986 Mar 17;155(3):543–549. doi: 10.1111/j.1432-1033.1986.tb09522.x. [DOI] [PubMed] [Google Scholar]
- Otulakowski G., Robinson B. H. Isolation and sequence determination of cDNA clones for porcine and human lipoamide dehydrogenase. Homology to other disulfide oxidoreductases. J Biol Chem. 1987 Dec 25;262(36):17313–17318. [PubMed] [Google Scholar]
- Packman L. C., Perham R. N. Limited proteolysis and sequence analysis of the 2-oxo acid dehydrogenase complexes from Escherichia coli. Cleavage sites and domains in the dihydrolipoamide acyltransferase components. Biochem J. 1987 Mar 1;242(2):531–538. doi: 10.1042/bj2420531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfanner N., Hoeben P., Tropschug M., Neupert W. The carboxyl-terminal two-thirds of the ADP/ATP carrier polypeptide contains sufficient information to direct translocation into mitochondria. J Biol Chem. 1987 Nov 5;262(31):14851–14854. [PubMed] [Google Scholar]
- Shore G. C., Rachubinski R. A., Argan C., Rozen R., Pouchelet M., Lusty C. J., Raymond Y. Synthesis and intracellular transport of mitochondrial matrix proteins in rat liver: studies in vivo and in vitro. Methods Enzymol. 1983;97:396–408. doi: 10.1016/0076-6879(83)97151-3. [DOI] [PubMed] [Google Scholar]
- Spencer M. E., Darlison M. G., Stephens P. E., Duckenfield I. K., Guest J. R. Nucleotide sequence of the sucB gene encoding the dihydrolipoamide succinyltransferase of Escherichia coli K12 and homology with the corresponding acetyltransferase. Eur J Biochem. 1984 Jun 1;141(2):361–374. doi: 10.1111/j.1432-1033.1984.tb08200.x. [DOI] [PubMed] [Google Scholar]
- Zhang B., Kuntz M. J., Goodwin G. W., Harris R. A., Crabb D. W. Molecular cloning of a cDNA for the E1 alpha subunit of rat liver branched chain alpha-ketoacid dehydrogenase. J Biol Chem. 1987 Nov 5;262(31):15220–15224. [PubMed] [Google Scholar]



