Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1989 May;44(5):686–694.

Analysis of liver/bone/kidney alkaline phosphatase mRNA, DNA, and enzymatic activity in cultured skin fibroblasts from 14 unrelated patients with severe hypophosphatasia.

M J Weiss 1, K Ray 1, M D Fallon 1, M P Whyte 1, K N Fedde 1, M A Lafferty 1, R A Mulivor 1, H Harris 1
PMCID: PMC1715639  PMID: 2705456

Abstract

Hypophosphatasia is a heritable disorder characterized by defective bone mineralization and a deficiency of liver/bone/kidney alkaline phosphatase (L/B/K ALP) activity in serum and tissues. Severe forms of the disease, which are generally lethal in infancy, are inherited in an autosomal recessive fashion. The gene defects that produce hypophosphatasia are poorly understood, but many are likely to occur at the L/B/K ALP locus. To investigate these gene defects, we analyzed L/B/K ALP DNA, RNA, and enzyme activity in cultured dermal fibroblasts from 14 patients with perinatal or infantile hypophosphatasia and from 12 normal individuals. Southern blot analyses of the L/B/K ALP genes from patients and controls revealed identical restriction patterns. Control fibroblast ALP activity correlated with the corresponding L/B/K ALP mRNA levels estimated by blot hybridization analysis and densitometry (r = .94, P less than .0001). In contrast, fibroblasts from the hypophosphatasia patients were deficient in ALP enzyme activity but expressed apparently full-sized L/B/K ALP mRNA at normal levels. Bone specimens from one of the patients were examined and found to be deficient in histochemical ALP but contained immunologic cross-reactive material detected by anti-human liver ALP antiserum. Our results demonstrate that the deficiency of ALP activity in fibroblasts from 14 patients with severe hypophosphatasia is not due to decreased steady-state levels of the corresponding mRNA. The presence of enzymatically inactive L/B/K ALP protein in one of these patients is consistent with a point mutation or small in-frame deletion in the coding region of L/B/K ALP gene.

Full text

PDF
686

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  2. Chodirker B. N., Evans J. A., Lewis M., Coghlan G., Belcher E., Philipps S., Seargeant L. E., Sus C., Greenberg C. R. Infantile hypophosphatasia--linkage with the RH locus. Genomics. 1987 Nov;1(3):280–282. doi: 10.1016/0888-7543(87)90056-5. [DOI] [PubMed] [Google Scholar]
  3. Danovitch S. H., Baer P. N., Laster L. Intestinal alkaline phosphatase activity in familial hypophosphatasia. N Engl J Med. 1968 Jun 6;278(23):1253–1260. doi: 10.1056/NEJM196806062782303. [DOI] [PubMed] [Google Scholar]
  4. FRASER D. Hypophosphatasia. Am J Med. 1957 May;22(5):730–746. doi: 10.1016/0002-9343(57)90124-9. [DOI] [PubMed] [Google Scholar]
  5. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  6. HARRIS H., ROBSON E. B. A genetical study of ethanolamine phosphate excretion in hypophosphatasia. Ann Hum Genet. 1959 Dec;23:421–441. doi: 10.1111/j.1469-1809.1959.tb01484.x. [DOI] [PubMed] [Google Scholar]
  7. Harris H. Multilocus enzyme systems and the evolution of gene expression: the alkaline phosphatases as a model example. Harvey Lect. 1980;76:95–124. [PubMed] [Google Scholar]
  8. Henthorn P. S., Raducha M., Edwards Y. H., Weiss M. J., Slaughter C., Lafferty M. A., Harris H. Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: close homology to placental alkaline phosphatase. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1234–1238. doi: 10.1073/pnas.84.5.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kam W., Clauser E., Kim Y. S., Kan Y. W., Rutter W. J. Cloning, sequencing, and chromosomal localization of human term placental alkaline phosphatase cDNA. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8715–8719. doi: 10.1073/pnas.82.24.8715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Millán J. L. Molecular cloning and sequence analysis of human placental alkaline phosphatase. J Biol Chem. 1986 Mar 5;261(7):3112–3115. [PubMed] [Google Scholar]
  11. Moss D. W., Whitaker K. B. Modification of alkaline phosphatases by treatment with glycosidases. Enzyme. 1985;34(4):212–216. doi: 10.1159/000469387. [DOI] [PubMed] [Google Scholar]
  12. Mueller H. D., Stinson R. A., Mohyuddin F., Milne J. K. Isoenzymes of alkaline phosphatase in infantile hypophosphatasia. J Lab Clin Med. 1983 Jul;102(1):24–30. [PubMed] [Google Scholar]
  13. Mulivor R. A., Mennuti M., Zackai E. H., Harris H. Prenatal diagnosis of hypophosphatasia; genetic, biochemical, and clinical studies. Am J Hum Genet. 1978 May;30(3):271–282. [PMC free article] [PubMed] [Google Scholar]
  14. RUSSELL R. G. EXCRETION OF INORGANIC PYROPHOSPHATE IN HYPOPHOSPHATASIA. Lancet. 1965 Sep 4;2(7410):461–464. doi: 10.1016/s0140-6736(65)91422-4. [DOI] [PubMed] [Google Scholar]
  15. Ray K., Weiss M. J., Dracopoli N. C., Harris H. Probe 8B/E5' detects a second RFLP at the human liver/bone/kidney alkaline phosphatase (ALPL) locus. Nucleic Acids Res. 1988 Mar 25;16(5):2361–2361. doi: 10.1093/nar/16.5.2361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Robison R. The Possible Significance of Hexosephosphoric Esters in Ossification. Biochem J. 1923;17(2):286–293. doi: 10.1042/bj0170286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  18. Smith M., Weiss M. J., Griffin C. A., Murray J. C., Buetow K. H., Emanuel B. S., Henthorn P. S., Harris H. Regional assignment of the gene for human liver/bone/kidney alkaline phosphatase to chromosome 1p36.1-p34. Genomics. 1988 Feb;2(2):139–143. doi: 10.1016/0888-7543(88)90095-x. [DOI] [PubMed] [Google Scholar]
  19. Spiegelman B. M., Frank M., Green H. Molecular cloning of mRNA from 3T3 adipocytes. Regulation of mRNA content for glycerophosphate dehydrogenase and other differentiation-dependent proteins during adipocyte development. J Biol Chem. 1983 Aug 25;258(16):10083–10089. [PubMed] [Google Scholar]
  20. Vanneuville F. J., Leroy J. G., Van Elsen A. F. Akaline phosphatase: activity and variation in human diploid fibroblasts. Arch Int Physiol Biochim. 1978 Oct;86(4):817–827. doi: 10.3109/13813457809069534. [DOI] [PubMed] [Google Scholar]
  21. Warshaw J. B., Littlefield J. W., Fishman W. H., Inglis N. R., Stolbach L. L. Serum alkaline phosphatase in hypophosphatasia. J Clin Invest. 1971 Oct;50(10):2137–2142. doi: 10.1172/JCI106707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weiss M. J., Cole D. E., Ray K., Whyte M. P., Lafferty M. A., Mulivor R. A., Harris H. A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7666–7669. doi: 10.1073/pnas.85.20.7666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Weiss M. J., Henthorn P. S., Lafferty M. A., Slaughter C., Raducha M., Harris H. Isolation and characterization of a cDNA encoding a human liver/bone/kidney-type alkaline phosphatase. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7182–7186. doi: 10.1073/pnas.83.19.7182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Weiss M. J., Ray K., Henthorn P. S., Lamb B., Kadesch T., Harris H. Structure of the human liver/bone/kidney alkaline phosphatase gene. J Biol Chem. 1988 Aug 25;263(24):12002–12010. [PubMed] [Google Scholar]
  25. Whyte M. P., Mahuren J. D., Vrabel L. A., Coburn S. P. Markedly increased circulating pyridoxal-5'-phosphate levels in hypophosphatasia. Alkaline phosphatase acts in vitamin B6 metabolism. J Clin Invest. 1985 Aug;76(2):752–756. doi: 10.1172/JCI112031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Whyte M. P., Rettinger S. D., Vrabel L. A. Infantile hypophosphatasia: enzymatic defect explored with alkaline phosphatase-deficient skin fibroblasts in culture. Calcif Tissue Int. 1987 May;40(5):244–252. doi: 10.1007/BF02555256. [DOI] [PubMed] [Google Scholar]
  27. Whyte M. P., Vrabel L. A. Infantile hypophosphatasia fibroblasts proliferate normally in culture: evidence against a role for alkaline phosphatase (tissue nonspecific isoenzyme) in the regulation of cell growth and differentiation. Calcif Tissue Int. 1987 Jan;40(1):1–7. doi: 10.1007/BF02555720. [DOI] [PubMed] [Google Scholar]
  28. Whyte M. P., Vrabel L. A., Schwartz T. D. Alkaline phosphatase deficiency in cultured skin fibroblasts from patients with hypophosphatasia: comparison of the infantile, childhood, and adult forms. J Clin Endocrinol Metab. 1983 Oct;57(4):831–837. doi: 10.1210/jcem-57-4-831. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES