Abstract
To identify mutations that cause hereditary hemorrhagic telangiectasia (HHT, or Rendu-Osler-Weber syndrome), clinical evaluations and genetic studies were performed on 32 families. Linkage studies in four of eight families indicated an endoglin (ENG) gene mutation. ENG sequences of affected members of the four linked families and probands from the 24 small families were screened for mutations, by Southern blot analyses and by cycle sequencing of PCR-amplified DNA. Seven novel mutations were identified in eight families. Two mutations (a termination codon in exon 4 and a large genomic deletion extending 3' of intron 8) did not produce a stable ENG transcript in lymphocytes. Five other mutations (two donor splice-site mutations and three deletions) produce altered mRNAs that are predicted to encode markedly truncated ENG proteins. Mutations in other families are predicted to lie in ENG-regulatory regions or in one of the additional genes that may cause HHT. These data suggest that the molecular mechanism by which ENG mutations cause HHT is haploinsufficiency. Furthermore, because the clinical manifestation of disease in these eight families was similar, we hypothesize that phenotypic variation of HHT is not related to a particular ENG mutation.
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Belgrader P., Maquat L. E. Nonsense but not missense mutations can decrease the abundance of nuclear mRNA for the mouse major urinary protein, while both types of mutations can facilitate exon skipping. Mol Cell Biol. 1994 Sep;14(9):6326–6336. doi: 10.1128/mcb.14.9.6326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bellón T., Corbí A., Lastres P., Calés C., Cebrián M., Vera S., Cheifetz S., Massague J., Letarte M., Bernabéu C. Identification and expression of two forms of the human transforming growth factor-beta-binding protein endoglin with distinct cytoplasmic regions. Eur J Immunol. 1993 Sep;23(9):2340–2345. doi: 10.1002/eji.1830230943. [DOI] [PubMed] [Google Scholar]
- Berg J. N., Guttmacher A. E., Marchuk D. A., Porteous M. E. Clinical heterogeneity in hereditary haemorrhagic telangiectasia: are pulmonary arteriovenous malformations more common in families linked to endoglin? J Med Genet. 1996 Mar;33(3):256–257. doi: 10.1136/jmg.33.3.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Braverman I. M., Keh A., Jacobson B. S. Ultrastructure and three-dimensional organization of the telangiectases of hereditary hemorrhagic telangiectasia. J Invest Dermatol. 1990 Oct;95(4):422–427. doi: 10.1111/1523-1747.ep12555569. [DOI] [PubMed] [Google Scholar]
- Braverman I. M., Ken-Yen A. Ultrastructure and three-dimensional reconstruction of several macular and papular telangiectases. J Invest Dermatol. 1983 Dec;81(6):489–497. doi: 10.1111/1523-1747.ep12522736. [DOI] [PubMed] [Google Scholar]
- Cheifetz S., Bellón T., Calés C., Vera S., Bernabeu C., Massagué J., Letarte M. Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem. 1992 Sep 25;267(27):19027–19030. [PubMed] [Google Scholar]
- Chilvers E. R., Whyte M. K., Jackson J. E., Allison D. J., Hughes J. M. Effect of percutaneous transcatheter embolization on pulmonary function, right-to-left shunt, and arterial oxygenation in patients with pulmonary arteriovenous malformations. Am Rev Respir Dis. 1990 Aug;142(2):420–425. doi: 10.1164/ajrccm/142.2.420. [DOI] [PubMed] [Google Scholar]
- Dickson M. C., Martin J. S., Cousins F. M., Kulkarni A. B., Karlsson S., Akhurst R. J. Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development. 1995 Jun;121(6):1845–1854. doi: 10.1242/dev.121.6.1845. [DOI] [PubMed] [Google Scholar]
- Edwards A., Civitello A., Hammond H. A., Caskey C. T. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet. 1991 Oct;49(4):746–756. [PMC free article] [PubMed] [Google Scholar]
- Gougos A., Letarte M. Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J Biol Chem. 1990 May 25;265(15):8361–8364. [PubMed] [Google Scholar]
- Guttmacher A. E., Marchuk D. A., White R. I., Jr Hereditary hemorrhagic telangiectasia. N Engl J Med. 1995 Oct 5;333(14):918–924. doi: 10.1056/NEJM199510053331407. [DOI] [PubMed] [Google Scholar]
- Hecker K. H., Roux K. H. High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR. Biotechniques. 1996 Mar;20(3):478–485. doi: 10.2144/19962003478. [DOI] [PubMed] [Google Scholar]
- Johnson D. W., Berg J. N., Baldwin M. A., Gallione C. J., Marondel I., Yoon S. J., Stenzel T. T., Speer M., Pericak-Vance M. A., Diamond A. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet. 1996 Jun;13(2):189–195. doi: 10.1038/ng0696-189. [DOI] [PubMed] [Google Scholar]
- Kaartinen V., Voncken J. W., Shuler C., Warburton D., Bu D., Heisterkamp N., Groffen J. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet. 1995 Dec;11(4):415–421. doi: 10.1038/ng1295-415. [DOI] [PubMed] [Google Scholar]
- Koh G. Y., Kim S. J., Klug M. G., Park K., Soonpaa M. H., Field L. J. Targeted expression of transforming growth factor-beta 1 in intracardiac grafts promotes vascular endothelial cell DNA synthesis. J Clin Invest. 1995 Jan;95(1):114–121. doi: 10.1172/JCI117627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lastres P., Letamendía A., Zhang H., Rius C., Almendro N., Raab U., López L. A., Langa C., Fabra A., Letarte M. Endoglin modulates cellular responses to TGF-beta 1. J Cell Biol. 1996 Jun;133(5):1109–1121. doi: 10.1083/jcb.133.5.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lavigueur A., La Branche H., Kornblihtt A. R., Chabot B. A splicing enhancer in the human fibronectin alternate ED1 exon interacts with SR proteins and stimulates U2 snRNP binding. Genes Dev. 1993 Dec;7(12A):2405–2417. doi: 10.1101/gad.7.12a.2405. [DOI] [PubMed] [Google Scholar]
- Manley J. L., Tacke R. SR proteins and splicing control. Genes Dev. 1996 Jul 1;10(13):1569–1579. doi: 10.1101/gad.10.13.1569. [DOI] [PubMed] [Google Scholar]
- McAllister K. A., Baldwin M. A., Thukkani A. K., Gallione C. J., Berg J. N., Porteous M. E., Guttmacher A. E., Marchuk D. A. Six novel mutations in the endoglin gene in hereditary hemorrhagic telangiectasia type 1 suggest a dominant-negative effect of receptor function. Hum Mol Genet. 1995 Oct;4(10):1983–1985. doi: 10.1093/hmg/4.10.1983. [DOI] [PubMed] [Google Scholar]
- McAllister K. A., Grogg K. M., Johnson D. W., Gallione C. J., Baldwin M. A., Jackson C. E., Helmbold E. A., Markel D. S., McKinnon W. C., Murrell J. Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet. 1994 Dec;8(4):345–351. doi: 10.1038/ng1294-345. [DOI] [PubMed] [Google Scholar]
- Piantanida M., Buscarini E., Dellavecchia C., Minelli A., Rossi A., Buscarini L., Danesino C. Hereditary haemorrhagic telangiectasia with extensive liver involvement is not caused by either HHT1 or HHT2. J Med Genet. 1996 Jun;33(6):441–443. doi: 10.1136/jmg.33.6.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plauchu H., de Chadarévian J. P., Bideau A., Robert J. M. Age-related clinical profile of hereditary hemorrhagic telangiectasia in an epidemiologically recruited population. Am J Med Genet. 1989 Mar;32(3):291–297. doi: 10.1002/ajmg.1320320302. [DOI] [PubMed] [Google Scholar]
- Puffenberger E. G., Francomano C. A. PCR-based detection of polymorphic DdeI and KpnI sites in intron 5 of the adenylate kinase (AK1) gene. Nucleic Acids Res. 1991 Mar 11;19(5):1161–1161. doi: 10.1093/nar/19.5.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
- Shovlin C. L., Hughes J. M., Tuddenham E. G., Temperley I., Perembelon Y. F., Scott J., Seidman C. E., Seidman J. G. A gene for hereditary haemorrhagic telangiectasia maps to chromosome 9q3. Nat Genet. 1994 Feb;6(2):205–209. doi: 10.1038/ng0294-205. [DOI] [PubMed] [Google Scholar]
- Shovlin C. L., Scott J. Inherited diseases of the vasculature. Annu Rev Physiol. 1996;58:483–507. doi: 10.1146/annurev.ph.58.030196.002411. [DOI] [PubMed] [Google Scholar]
- Shovlin C. L., Simmonds H. A., Fairbanks L. D., Deacock S. J., Hughes J. M., Lechler R. I., Webster A. D., Sun X. M., Webb J. C., Soutar A. K. Adult onset immunodeficiency caused by inherited adenosine deaminase deficiency. J Immunol. 1994 Sep 1;153(5):2331–2339. [PubMed] [Google Scholar]
- Shovlin C. L. Streamlined procedures for screening a P1 library. Biotechniques. 1996 Sep;21(3):388–390. doi: 10.2144/96213bm09. [DOI] [PubMed] [Google Scholar]
- Shovlin C. L., Winstock A. R., Peters A. M., Jackson J. E., Hughes J. M. Medical complications of pregnancy in hereditary haemorrhagic telangiectasia. QJM. 1995 Dec;88(12):879–887. [PubMed] [Google Scholar]
- Yamashita H., Ichijo H., Grimsby S., Morén A., ten Dijke P., Miyazono K. Endoglin forms a heteromeric complex with the signaling receptors for transforming growth factor-beta. J Biol Chem. 1994 Jan 21;269(3):1995–2001. [PubMed] [Google Scholar]
- Zhang H., Shaw A. R., Mak A., Letarte M. Endoglin is a component of the transforming growth factor (TGF)-beta receptor complex of human pre-B leukemic cells. J Immunol. 1996 Jan 15;156(2):564–573. [PubMed] [Google Scholar]
- Zhang S., Ruiz-Echevarria M. J., Quan Y., Peltz S. W. Identification and characterization of a sequence motif involved in nonsense-mediated mRNA decay. Mol Cell Biol. 1995 Apr;15(4):2231–2244. doi: 10.1128/mcb.15.4.2231. [DOI] [PMC free article] [PubMed] [Google Scholar]