Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1997 Oct;61(4):822–829. doi: 10.1086/514885

PCR quantitation of fetal cells in maternal blood in normal and aneuploid pregnancies.

D W Bianchi 1, J M Williams 1, L M Sullivan 1, F W Hanson 1, K W Klinger 1, A P Shuber 1
PMCID: PMC1715976  PMID: 9382092

Abstract

Fetal cells in maternal blood are a noninvasive source of fetal genetic material for prenatal diagnosis. We determined the number of fetal-cell DNA equivalents present in maternal whole-blood samples to deduce whether this number is affected by fetal karyotype. Peripheral blood samples were obtained from 199 women carrying chromosomally normal fetuses and from 31 women with male aneuploid fetuses. Male fetal-cell DNA-equivalent quantitation was determined by PCR amplification of a Y chromosome-specific sequence and was compared with PCR product amplified from known concentrations of male DNA run simultaneously. The mean number of male fetal-cell DNA equivalents detected in 16-ml blood samples from 90 women bearing a 46,XY fetus was 19 (range 0-91). The mean number of male fetal-cell DNA equivalents detected in 109 women bearing a 46,XX fetus was 2 (range 0-24). The mean number of male fetal-cell DNA equivalents detected when the fetus was male compared with when the fetus was female was highly significant (P = .0001). More fetal cells were detected in maternal blood when the fetus was aneuploid. The mean number of male fetal-cell DNA equivalents detected when the fetal karyotype was 47,XY,+21 was 110 (range 0.1-650), which was significantly higher than the number of male fetal-cell DNA equivalents detected in 46,XY fetuses (P = .0001). Feto-maternal transfusion of nucleated cells appears to be influenced by fetal karyotype. The sixfold elevation of fetal cells observed in maternal blood when the fetus had trisomy 21 indicates that noninvasive cytogenetic diagnosis of trisomy 21 should be feasible.

Full text

PDF
822

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bianchi D. W., Mahr A., Zickwolf G. K., Houseal T. W., Flint A. F., Klinger K. W. Detection of fetal cells with 47,XY,+21 karyotype in maternal peripheral blood. Hum Genet. 1992 Dec;90(4):368–370. doi: 10.1007/BF00220460. [DOI] [PubMed] [Google Scholar]
  2. Bianchi D. W. Prenatal diagnosis by analysis of fetal cells in maternal blood. J Pediatr. 1995 Dec;127(6):847–856. doi: 10.1016/s0022-3476(95)70018-8. [DOI] [PubMed] [Google Scholar]
  3. Bianchi D. W., Shuber A. P., DeMaria M. A., Fougner A. C., Klinger K. W. Fetal cells in maternal blood: determination of purity and yield by quantitative polymerase chain reaction. Am J Obstet Gynecol. 1994 Oct;171(4):922–926. doi: 10.1016/s0002-9378(94)70059-1. [DOI] [PubMed] [Google Scholar]
  4. Bianchi D. W., Zickwolf G. K., Weil G. J., Sylvester S., DeMaria M. A. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):705–708. doi: 10.1073/pnas.93.2.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Elias S., Price J., Dockter M., Wachtel S., Tharapel A., Simpson J. L., Klinger K. W. First trimester prenatal diagnosis of trisomy 21 in fetal cells from maternal blood. Lancet. 1992 Oct 24;340(8826):1033–1033. doi: 10.1016/0140-6736(92)93041-k. [DOI] [PubMed] [Google Scholar]
  6. Gänshirt-Ahlert D., Börjesson-Stoll R., Burschyk M., Dohr A., Garritsen H. S., Helmer E., Miny P., Velasco M., Walde C., Patterson D. Detection of fetal trisomies 21 and 18 from maternal blood using triple gradient and magnetic cell sorting. Am J Reprod Immunol. 1993 Sep-Oct;30(2-3):194–201. doi: 10.1111/j.1600-0897.1993.tb00620.x. [DOI] [PubMed] [Google Scholar]
  7. Hawes C. S., Suskin H. A., Petropoulos A., Latham S. E., Mueller U. W. A morphologic study of trophoblast isolated from peripheral blood of pregnant women. Am J Obstet Gynecol. 1994 May;170(5 Pt 1):1297–1300. doi: 10.1016/s0002-9378(94)70144-x. [DOI] [PubMed] [Google Scholar]
  8. Kuhlmann R. S., Werner A. L., Abramowicz J., Warsof S. L., Arrington J., Levy D. L. Placental histology in fetuses between 18 and 23 weeks' gestation with abnormal karyotype. Am J Obstet Gynecol. 1990 Oct;163(4 Pt 1):1264–1270. doi: 10.1016/0002-9378(90)90704-b. [DOI] [PubMed] [Google Scholar]
  9. Labbé S., Copin H., Choiset A., Girard S., Barbet J. P. Placenta et trisomies 13, 18, 21. J Gynecol Obstet Biol Reprod (Paris) 1989;18(8):989–996. [PubMed] [Google Scholar]
  10. Lucotte G., David F., Mariotti M. Nucleotide sequence of p49a, a genomic Y-specific probe with potential utilization in sex determination. Mol Cell Probes. 1991 Oct;5(5):359–363. doi: 10.1016/s0890-8508(06)80007-1. [DOI] [PubMed] [Google Scholar]
  11. Price J. O., Elias S., Wachtel S. S., Klinger K., Dockter M., Tharapel A., Shulman L. P., Phillips O. P., Meyers C. M., Shook D. Prenatal diagnosis with fetal cells isolated from maternal blood by multiparameter flow cytometry. Am J Obstet Gynecol. 1991 Dec;165(6 Pt 1):1731–1737. doi: 10.1016/0002-9378(91)90024-l. [DOI] [PubMed] [Google Scholar]
  12. Reading J. P., Huffman J. L., Wu J. C., Palmer F. T., Harton G. L., Sisson M. E., Keyvanfar K., Gresinger T. H., Cochrane W. J., Fallon L. A. Nucleated erythrocytes in maternal blood: quantity and quality of fetal cells in enriched populations. Hum Reprod. 1995 Sep;10(9):2510–2515. doi: 10.1093/oxfordjournals.humrep.a136332. [DOI] [PubMed] [Google Scholar]
  13. Simpson J. L., Elias S. Isolating fetal cells from maternal blood. Advances in prenatal diagnosis through molecular technology. JAMA. 1993 Nov 17;270(19):2357–2361. [PubMed] [Google Scholar]
  14. Strobel S. L., Brandt J. T. Abnormal hematologic features in a live-born female infant with triploidy. Arch Pathol Lab Med. 1985 Aug;109(8):775–777. [PubMed] [Google Scholar]
  15. Sullivan L. M., D'Agostino R. B. Robustness of the t test applied to data distorted from normality by floor effects. J Dent Res. 1992 Dec;71(12):1938–1943. doi: 10.1177/00220345920710121601. [DOI] [PubMed] [Google Scholar]
  16. Takabayashi H., Kuwabara S., Ukita T., Ikawa K., Yamafuji K., Igarashi T. Development of non-invasive fetal DNA diagnosis from maternal blood. Prenat Diagn. 1995 Jan;15(1):74–77. doi: 10.1002/pd.1970150116. [DOI] [PubMed] [Google Scholar]
  17. Verloes A., Schoos R., Herens C., Vintens A., Koulischer L. A prenatal trisomy 21 screening program using alpha-fetoprotein, human chorionic gonadotropin, and free estriol assays on maternal dried blood. Am J Obstet Gynecol. 1995 Jan;172(1 Pt 1):167–174. doi: 10.1016/0002-9378(95)90108-6. [DOI] [PubMed] [Google Scholar]
  18. Wald N. J., Kennard A., Hackshaw A. K. First trimester serum screening for Down's syndrome. Prenat Diagn. 1995 Dec;15(13):1227–1240. doi: 10.1002/pd.1970151305. [DOI] [PubMed] [Google Scholar]
  19. Wessman M., Ylinen K., Knuutila S. Fetal granulocytes in maternal venous blood detected by in situ hybridization. Prenat Diagn. 1992 Dec;12(12):993–1000. doi: 10.1002/pd.1970121204. [DOI] [PubMed] [Google Scholar]
  20. Zheng Y. L., Demaria M., Zhen D., Vadnais T. J., Bianchi D. W. Flow sorting of fetal erythroblasts using intracytoplasmic anti-fetal haemoglobin: preliminary observations on maternal samples. Prenat Diagn. 1995 Oct;15(10):897–905. doi: 10.1002/pd.1970151004. [DOI] [PubMed] [Google Scholar]
  21. de la Cruz F., Shifrin H., Elias S., Simpson J. L., Jackson L., Klinger K., Bianchi D. W., Kaplan S. H., Evans M. I., Holzgreve W. Prenatal diagnosis by use of fetal cells isolated from maternal blood. Am J Obstet Gynecol. 1995 Oct;173(4):1354–1355. doi: 10.1016/0002-9378(95)91393-9. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES