Abstract
In this paper, we address some of the statistical issues concerning false-positive rates that arise when the whole genome, or a portion thereof, is scanned in distantly related individuals, to search for a disease locus. We derive a method for correcting false-positive probabilities for the large number of comparisons that are performed when scanning a large portion of the genome. We consider both the idealized situation of a dense set of fully informative markers and the more realistic data-collection strategy of an initial scan at low resolution to identify promising areas, which then are typed with markers at high resolution. We also examine the accuracy of false-positive rates approximated using a conservative estimate of the separation distance between affected individuals in the current generation and the common ancestral couple. Calculation of false-positive rates when inbreeding is present in the pedigree also is considered.
Full text
PDF![830](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbb1/1715979/12b5578c6d61/ajhg00010-0053.png)
![831](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbb1/1715979/5c623263325d/ajhg00010-0054.png)
![832](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbb1/1715979/a44683a66b49/ajhg00010-0055.png)
![833](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbb1/1715979/da3a82c6abe1/ajhg00010-0056.png)
![834](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbb1/1715979/f136eb93a3aa/ajhg00010-0057.png)
![835](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbb1/1715979/a6aea63405dc/ajhg00010-0058.png)
![836](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbb1/1715979/6168afe64150/ajhg00010-0059.png)
![837](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbb1/1715979/636bada8854a/ajhg00010-0060.png)
![838](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbb1/1715979/a4d53e233b48/ajhg00010-0061.png)
![839](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbb1/1715979/82c6abede6ad/ajhg00010-0062.png)
![840](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbb1/1715979/dfcf05a19294/ajhg00010-0063.png)
![841](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbb1/1715979/23435ce43918/ajhg00010-0064.png)
![842](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbb1/1715979/21e38423dc41/ajhg00010-0065.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Donnelly K. P. The probability that related individuals share some section of genome identical by descent. Theor Popul Biol. 1983 Feb;23(1):34–63. doi: 10.1016/0040-5809(83)90004-7. [DOI] [PubMed] [Google Scholar]
- Feingold E., Brown P. O., Siegmund D. Gaussian models for genetic linkage analysis using complete high-resolution maps of identity by descent. Am J Hum Genet. 1993 Jul;53(1):234–251. [PMC free article] [PubMed] [Google Scholar]
- Guo S. W. Proportion of genome shared identical by descent by relatives: concept, computation, and applications. Am J Hum Genet. 1995 Jun;56(6):1468–1476. [PMC free article] [PubMed] [Google Scholar]
- Haseman J. K., Elston R. C. The investigation of linkage between a quantitative trait and a marker locus. Behav Genet. 1972 Mar;2(1):3–19. doi: 10.1007/BF01066731. [DOI] [PubMed] [Google Scholar]
- Houwen R. H., Baharloo S., Blankenship K., Raeymaekers P., Juyn J., Sandkuijl L. A., Freimer N. B. Genome screening by searching for shared segments: mapping a gene for benign recurrent intrahepatic cholestasis. Nat Genet. 1994 Dec;8(4):380–386. doi: 10.1038/ng1294-380. [DOI] [PubMed] [Google Scholar]
- Hästbacka J., de la Chapelle A., Kaitila I., Sistonen P., Weaver A., Lander E. Linkage disequilibrium mapping in isolated founder populations: diastrophic dysplasia in Finland. Nat Genet. 1992 Nov;2(3):204–211. doi: 10.1038/ng1192-204. [DOI] [PubMed] [Google Scholar]
- Jorde L. B. Linkage disequilibrium as a gene-mapping tool. Am J Hum Genet. 1995 Jan;56(1):11–14. [PMC free article] [PubMed] [Google Scholar]
- Kruglyak L., Daly M. J., Reeve-Daly M. P., Lander E. S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet. 1996 Jun;58(6):1347–1363. [PMC free article] [PubMed] [Google Scholar]
- Kruglyak L., Lander E. S. High-resolution genetic mapping of complex traits. Am J Hum Genet. 1995 May;56(5):1212–1223. [PMC free article] [PubMed] [Google Scholar]
- Lander E., Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995 Nov;11(3):241–247. doi: 10.1038/ng1195-241. [DOI] [PubMed] [Google Scholar]
- Lehesjoki A. E., Koskiniemi M., Norio R., Tirrito S., Sistonen P., Lander E., de la Chapelle A. Localization of the EPM1 gene for progressive myoclonus epilepsy on chromosome 21: linkage disequilibrium allows high resolution mapping. Hum Mol Genet. 1993 Aug;2(8):1229–1234. doi: 10.1093/hmg/2.8.1229. [DOI] [PubMed] [Google Scholar]
- Puffenberger E. G., Kauffman E. R., Bolk S., Matise T. C., Washington S. S., Angrist M., Weissenbach J., Garver K. L., Mascari M., Ladda R. Identity-by-descent and association mapping of a recessive gene for Hirschsprung disease on human chromosome 13q22. Hum Mol Genet. 1994 Aug;3(8):1217–1225. doi: 10.1093/hmg/3.8.1217. [DOI] [PubMed] [Google Scholar]
- Thomas A., Skolnick M. H., Lewis C. M. Genomic mismatch scanning in pedigrees. IMA J Math Appl Med Biol. 1994;11(1):1–16. doi: 10.1093/imammb/11.1.1. [DOI] [PubMed] [Google Scholar]
- Weeks D. E., Lange K. The affected-pedigree-member method of linkage analysis. Am J Hum Genet. 1988 Feb;42(2):315–326. [PMC free article] [PubMed] [Google Scholar]