Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1990 Mar;34(3):420–425. doi: 10.1128/aac.34.3.420

Use of extracts versus whole-cell bacterial suspensions in the identification of Staphylococcus aureus beta-lactamase variants.

D S Kernodle 1, P A McGraw 1, C W Stratton 1, A B Kaiser 1
PMCID: PMC171608  PMID: 2334154

Abstract

We previously have shown that extracts of S. aureus isolates which produce the recognized serotypes of staphylococcal beta-lactamase (A, B, C, D) differ in the rates at which they hydrolyze selected cephalosporins, exhibiting substrate profiles which are distinctive for each serotype. In an effort to simplify the methods employed in identifying the different staphylococcal beta-lactamases, we evaluated whether distinctive substrate profiles could be obtained by using whole-cell suspensions of 115 beta-lactamase-producing isolates of S. aureus. Compared with extracts from the same strains, the whole-cell bacterial suspensions not only were simpler to prepare but enabled beta-lactamase typing of a higher proportion of the evaluated strains (86 versus 97%, respectively). Furthermore, the use of whole-cell bacterial suspensions enabled the simultaneous quantitation of the beta-lactamase activity exhibited by each strain. Additionally, by comparing the quantitative activity of beta-lactamase-induced and -uninduced preparations of the same strain, induction ratios (i.e., induced/uninduced activity) could be derived, yielding information regarding the regulation of beta-lactamase production by each strain. We believe that the utilization of whole-cell methods, such as those employed in this study, will facilitate the investigation of qualitative and quantitative differences in beta-lactamase production among clinical and reference isolates of S. aureus.

Full text

PDF
420

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BATCHELOR F. R., CAMERON-WOOD J., CHAIN E. B., ROLINSON G. N. STUDIES ON PENICILLINASE PRODUCED BY A STRAIN OF STAPHYLOCOCCUS AUREUS. Proc R Soc Lond B Biol Sci. 1963 Oct 22;158:311–328. doi: 10.1098/rspb.1963.0050. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Kernodle D. S., Stratton C. W., McMurray L. W., Chipley J. R., McGraw P. A. Differentiation of beta-lactamase variants of Staphylococcus aureus by substrate hydrolysis profiles. J Infect Dis. 1989 Jan;159(1):103–108. doi: 10.1093/infdis/159.1.103. [DOI] [PubMed] [Google Scholar]
  4. Lacey R. W., Rosdahl V. T. An unusual "penicillinase plasmid" in staphylococcus aureus; evidence for its transfer under natural conditions. J Med Microbiol. 1974 Feb;7(1):1–9. doi: 10.1099/00222615-7-1-1. [DOI] [PubMed] [Google Scholar]
  5. NOVICK R. P. Staphylococcal penicillinase and the new penicillins. Biochem J. 1962 May;83:229–235. doi: 10.1042/bj0830229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Nielsen J. B., Lampen J. O. Membrane-bound penicillinases in Gram-positive bacteria. J Biol Chem. 1982 Apr 25;257(8):4490–4495. [PubMed] [Google Scholar]
  7. O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother. 1972 Apr;1(4):283–288. doi: 10.1128/aac.1.4.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. RICHMOND M. H. WILD-TYPE VARIANTS OF EXOPENICILLINASE FROM STAPHYLOCOCCUS AUREUS. Biochem J. 1965 Mar;94:584–593. doi: 10.1042/bj0940584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rosdahl V. T. Localisation of the penicillinase gene in naturally occurring Staphylococcus aureus strains. Acta Pathol Microbiol Immunol Scand B. 1985 Dec;93(6):383–388. doi: 10.1111/j.1699-0463.1985.tb02906.x. [DOI] [PubMed] [Google Scholar]
  10. Rosdahl V. T. Naturally occurring constitutive -lactamase of novel serotype in Staphylococcus aureus. J Gen Microbiol. 1973 Jul;77(1):229–231. doi: 10.1099/00221287-77-1-229. [DOI] [PubMed] [Google Scholar]
  11. Rosdahl V. T. Penicillinase production in Staphylococcus aureus strains of clinical importance. Dan Med Bull. 1986 Aug;33(4):175–184. [PubMed] [Google Scholar]
  12. Shalita Z., Murphy E., Novick R. P. Penicillinase plasmids of Staphylococcus aureus: structural and evolutionary relationships. Plasmid. 1980 May;3(3):291–311. doi: 10.1016/0147-619x(80)90042-6. [DOI] [PubMed] [Google Scholar]
  13. Stratton C. W., Kernodle D. S., Eades S. C., Weeks L. S. Evaluation of cefotaxime alone and in combination with desacetylcefotaxime against strains of Staphylococcus aureus that produce variants of staphylococcal beta-lactamase. Diagn Microbiol Infect Dis. 1989 Jan-Feb;12(1):57–65. doi: 10.1016/0732-8893(89)90047-3. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES