Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1997 Jun;60(6):1326–1332. doi: 10.1086/515470

Linkage of a gene causing high bone mass to human chromosome 11 (11q12-13)

M L Johnson 1, G Gong 1, W Kimberling 1, S M Reckér 1, D B Kimmel 1, R B Recker 1
PMCID: PMC1716125  PMID: 9199553

Abstract

The purpose of this paper is to report the linkage of a genetic locus (designated "HBM") in the human genome to a phenotype of very high spinal bone density, using a single extended pedigree. We measured spinal bone-mineral density, spinal Z(BMD), and collected blood from 22 members of this kindred. DNA was genotyped on an Applied Biosystems model 377 (ABI PRISM Linkage Mapping Sets; Perkin Elmer Applied Biosystems), by use of fluorescence-based marker sets that included 345 markers. Both two-point and multipoint linkage analyses were performed, by use of affected/unaffected and quantitative-trait models. Spinal Z(BMD) for affected individuals (N = 12) of the kindred was 5.54 +/- 1.40; and for unaffected individuals (N = 16) it was 0.41 +/- 0.81. The trait was present in affected individuals 18-86 years of age, suggesting that HBM influences peak bone mass. The only region of linkage was to a series of markers on chromosome 11 (11q12-13). The highest LOD score (5.21) obtained in two-point analysis, when a quantitative-trait model was used, was at D11S987. Multipoint analysis using a quantitative-trait model confirmed the linkage, with a LOD score of 5.74 near marker D11S987. HBM demonstrates the utility of spinal Z(BMD) as a quantitative bone phenotype that can be used for linkage analysis. Osteoporosis pseudoglioma syndrome also has been mapped to this region of chromosome 11. Identification of the causal gene for both traits will be required for determination of whether a single gene with different alleles that determine a wide range of peak bone densities exists in this region.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dequeker J., Geusens P. Contributions of aging and estrogen deficiency to postmenopausal bone loss. N Engl J Med. 1985 Aug 15;313(7):453–453. doi: 10.1056/NEJM198508153130716. [DOI] [PubMed] [Google Scholar]
  2. Dequeker J., Nijs J., Verstraeten A., Geusens P., Gevers G. Genetic determinants of bone mineral content at the spine and radius: a twin study. Bone. 1987;8(4):207–209. doi: 10.1016/8756-3282(87)90166-9. [DOI] [PubMed] [Google Scholar]
  3. Eisman J. A. Vitamin D receptor gene alleles and osteoporosis: an affirmative view. J Bone Miner Res. 1995 Sep;10(9):1289–1293. doi: 10.1002/jbmr.5650100903. [DOI] [PubMed] [Google Scholar]
  4. Garnero P., Borel O., Sornay-Rendu E., Delmas P. D. Vitamin D receptor gene polymorphisms do not predict bone turnover and bone mass in healthy premenopausal women. J Bone Miner Res. 1995 Sep;10(9):1283–1288. doi: 10.1002/jbmr.5650100902. [DOI] [PubMed] [Google Scholar]
  5. Gong Y., Vikkula M., Boon L., Liu J., Beighton P., Ramesar R., Peltonen L., Somer H., Hirose T., Dallapiccola B. Osteoporosis-pseudoglioma syndrome, a disorder affecting skeletal strength and vision, is assigned to chromosome region 11q12-13. Am J Hum Genet. 1996 Jul;59(1):146–151. [PMC free article] [PubMed] [Google Scholar]
  6. Howard G., Nguyen T., Morrison N., Watanabe T., Sambrook P., Eisman J., Kelly P. J. Genetic influences on bone density: physiological correlates of vitamin D receptor gene alleles in premenopausal women. J Clin Endocrinol Metab. 1995 Sep;80(9):2800–2805. doi: 10.1210/jcem.80.9.7673427. [DOI] [PubMed] [Google Scholar]
  7. Hui S. L., Slemenda C. W., Johnston C. C., Jr Baseline measurement of bone mass predicts fracture in white women. Ann Intern Med. 1989 Sep 1;111(5):355–361. doi: 10.7326/0003-4819-111-5-355. [DOI] [PubMed] [Google Scholar]
  8. Hustmyer F. G., Peacock M., Hui S., Johnston C. C., Christian J. Bone mineral density in relation to polymorphism at the vitamin D receptor gene locus. J Clin Invest. 1994 Nov;94(5):2130–2134. doi: 10.1172/JCI117568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johnston C. C., Jr, Longcope C. Premenopausal bone loss--a risk factor for osteoporosis. N Engl J Med. 1990 Nov 1;323(18):1271–1273. doi: 10.1056/NEJM199011013231809. [DOI] [PubMed] [Google Scholar]
  10. Kanders B., Dempster D. W., Lindsay R. Interaction of calcium nutrition and physical activity on bone mass in young women. J Bone Miner Res. 1988 Apr;3(2):145–149. doi: 10.1002/jbmr.5650030204. [DOI] [PubMed] [Google Scholar]
  11. Krall E. A., Dawson-Hughes B. Heritable and life-style determinants of bone mineral density. J Bone Miner Res. 1993 Jan;8(1):1–9. doi: 10.1002/jbmr.5650080102. [DOI] [PubMed] [Google Scholar]
  12. Lathrop G. M., Lalouel J. M., Julier C., Ott J. Multilocus linkage analysis in humans: detection of linkage and estimation of recombination. Am J Hum Genet. 1985 May;37(3):482–498. [PMC free article] [PubMed] [Google Scholar]
  13. Looker A. C., Wahner H. W., Dunn W. L., Calvo M. S., Harris T. B., Heyse S. P., Johnston C. C., Jr, Lindsay R. L. Proximal femur bone mineral levels of US adults. Osteoporos Int. 1995;5(5):389–409. doi: 10.1007/BF01622262. [DOI] [PubMed] [Google Scholar]
  14. Matković V., Kostial K., Simonović I., Buzina R., Brodarec A., Nordin B. E. Bone status and fracture rates in two regions of Yugoslavia. Am J Clin Nutr. 1979 Mar;32(3):540–549. doi: 10.1093/ajcn/32.3.540. [DOI] [PubMed] [Google Scholar]
  15. Morrison N. A., Qi J. C., Tokita A., Kelly P. J., Crofts L., Nguyen T. V., Sambrook P. N., Eisman J. A. Prediction of bone density from vitamin D receptor alleles. Nature. 1994 Jan 20;367(6460):284–287. doi: 10.1038/367284a0. [DOI] [PubMed] [Google Scholar]
  16. Møller M., Horsman A., Harvald B., Hauge M., Henningsen K., Nordin B. E. Metacarpal morphometry in monozygotic dizygotic elderly twins. Calcif Tissue Res. 1978 May 26;25(2):197–201. doi: 10.1007/BF02010768. [DOI] [PubMed] [Google Scholar]
  17. Nilas L., Christiansen C. Bone mass and its relationship to age and the menopause. J Clin Endocrinol Metab. 1987 Oct;65(4):697–702. doi: 10.1210/jcem-65-4-697. [DOI] [PubMed] [Google Scholar]
  18. Peacock M. Vitamin D receptor gene alleles and osteoporosis: a contrasting view. J Bone Miner Res. 1995 Sep;10(9):1294–1297. doi: 10.1002/jbmr.5650100904. [DOI] [PubMed] [Google Scholar]
  19. Pocock N. A., Eisman J. A., Hopper J. L., Yeates M. G., Sambrook P. N., Eberl S. Genetic determinants of bone mass in adults. A twin study. J Clin Invest. 1987 Sep;80(3):706–710. doi: 10.1172/JCI113125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reed P. W., Davies J. L., Copeman J. B., Bennett S. T., Palmer S. M., Pritchard L. E., Gough S. C., Kawaguchi Y., Cordell H. J., Balfour K. M. Chromosome-specific microsatellite sets for fluorescence-based, semi-automated genome mapping. Nat Genet. 1994 Jul;7(3):390–395. doi: 10.1038/ng0794-390. [DOI] [PubMed] [Google Scholar]
  21. Richelson L. S., Wahner H. W., Melton L. J., 3rd, Riggs B. L. Relative contributions of aging and estrogen deficiency to postmenopausal bone loss. N Engl J Med. 1984 Nov 15;311(20):1273–1275. doi: 10.1056/NEJM198411153112002. [DOI] [PubMed] [Google Scholar]
  22. Riggs B. L., Nguyen T. V., Melton L. J., 3rd, Morrison N. A., O'Fallon W. M., Kelly P. J., Egan K. S., Sambrook P. N., Muhs J. M., Eisman J. A. The contribution of vitamin D receptor gene alleles to the determination of bone mineral density in normal and osteoporotic women. J Bone Miner Res. 1995 Jun;10(6):991–996. doi: 10.1002/jbmr.5650100622. [DOI] [PubMed] [Google Scholar]
  23. Slemenda C. W., Christian J. C., Williams C. J., Norton J. A., Johnston C. C., Jr Genetic determinants of bone mass in adult women: a reevaluation of the twin model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res. 1991 Jun;6(6):561–567. doi: 10.1002/jbmr.5650060606. [DOI] [PubMed] [Google Scholar]
  24. Smith D. M., Nance W. E., Kang K. W., Christian J. C., Johnston C. C., Jr Genetic factors in determining bone mass. J Clin Invest. 1973 Nov;52(11):2800–2808. doi: 10.1172/JCI107476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spector T. D., Keen R. W., Arden N. K., Morrison N. A., Major P. J., Nguyen T. V., Kelly P. J., Baker J. R., Sambrook P. N., Lanchbury J. S. Influence of vitamin D receptor genotype on bone mineral density in postmenopausal women: a twin study in Britain. BMJ. 1995 May 27;310(6991):1357–1360. doi: 10.1136/bmj.310.6991.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Spotila L. D., Caminis J., Devoto M., Shimoya K., Sereda L., Ott J., Whyte M. P., Tenenhouse A., Prockop D. J. Osteopenia in 37 members of seven families: analysis based on a model of dominant inheritance. Mol Med. 1996 May;2(3):313–324. [PMC free article] [PubMed] [Google Scholar]
  27. Young D., Hopper J. L., Nowson C. A., Green R. M., Sherwin A. J., Kaymakci B., Smid M., Guest C. S., Larkins R. G., Wark J. D. Determinants of bone mass in 10- to 26-year-old females: a twin study. J Bone Miner Res. 1995 Apr;10(4):558–567. doi: 10.1002/jbmr.5650100408. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES