Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1990 Apr;34(4):581–586. doi: 10.1128/aac.34.4.581

Activity of sulbactam in combination with ceftriaxone in vitro and in experimental endocarditis caused by Escherichia coli producing SHV-2-like beta-lactamase.

B Fantin 1, B Pangon 1, G Potel 1, F Caron 1, E Vallée 1, J M Vallois 1, J Mohler 1, A Buré 1, A Philippon 1, C Carbon 1
PMCID: PMC171647  PMID: 2188586

Abstract

We studied the efficacy of sulbactam, a beta-lactamase inhibitor, in combination with ceftriaxone in vitro and in experimental endocarditis due to an Escherichia coli strain producing an extended-spectrum beta-lactamase most similar to SHV-2, a new mechanism of resistance to broad-spectrum cephalosporins among members of the family Enterobacteriaceae. In vitro, ceftriaxone demonstrated an important inoculum effect (MICs were 2 and 256 micrograms/ml with 5 X 10(5) and 5 X 10(7) CFU of inoculum per ml, respectively). Sulbactam inhibited the beta-lactamase degradation of ceftriaxone and enhanced the killing by ceftriaxone with both inocula tested. In vivo, sulbactam (100 mg/kg every 8 h) or ceftriaxone (15 or 30 mg/kg every 24 h) alone were ineffective after a 4-day therapy. The addition of sulbactam to ceftriaxone (15 mg/kg) or to the ceftriaxone (15 mg/kg)-netilmicin (6 mg/kg every 24 h) combination produced a reduction of 2 log10 CFU/g of vegetation greater than that produced by therapy without sulbactam. The sulbactam-ceftriaxone (30 mg/kg) combination produced a reduction of almost 5 log10 CFU/g of vegetation greater than that produced by single-drug therapy (P less than 0.01), sterilized five of eight vegetations (versus none of seven for ceftriaxone [30 mg/kg] alone; P less than 0.05), and was as effective as the ceftriaxone (15 mg/kg)-sulbactam-netilmicin combination. We concluded that (i) SHV-2 production was responsible for ceftriaxone failure in vivo, probably because of the high inoculum present in vegetations; (ii) sulbactam used in a regimen which provided levels in serum constantly above 4 micrograms/ml and a vegetation/serum peak ratio of approximately 1:3 enhanced the activity of a broad-spectrum cephalosporin in a severe experimental infection; and (iii) the highest dose of ceftriaxone in combination with sulbactam was as effective as the lowest dose of ceftriaxone plus sulbactam plus an aminoglycoside.

Full text

PDF
581

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barthelemy M., Guionie M., Labia R. Beta-lactamases: determination of their isoelectric points. Antimicrob Agents Chemother. 1978 Apr;13(4):695–698. doi: 10.1128/aac.13.4.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ben Redjeb S., Ben Yaghlane H., Boujnah A., Philippon A., Labia R. Synergy between clavulanic acid and newer beta-lactams on nine clinical isolates of Klebsiella pneumoniae, Escherichia coli and Salmonella typhimurium resistant to third-generation cephalosporins. J Antimicrob Chemother. 1988 Feb;21(2):263–266. doi: 10.1093/jac/21.2.263. [DOI] [PubMed] [Google Scholar]
  3. Brun-Buisson C., Legrand P., Philippon A., Montravers F., Ansquer M., Duval J. Transferable enzymatic resistance to third-generation cephalosporins during nosocomial outbreak of multiresistant Klebsiella pneumoniae. Lancet. 1987 Aug 8;2(8554):302–306. doi: 10.1016/s0140-6736(87)90891-9. [DOI] [PubMed] [Google Scholar]
  4. Dougherty P. F., Yotter D. W., Matthews T. R. Microdilution transfer plate technique for determining in vitro synergy of antimicrobial agents. Antimicrob Agents Chemother. 1977 Feb;11(2):225–228. doi: 10.1128/aac.11.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fantin B., Pangon B., Potel G., Vallois J. M., Caron F., Bure A., Carbon C. Ceftriaxone-netilmicin combination in single-daily-dose treatment of experimental Escherichia coli endocarditis. Antimicrob Agents Chemother. 1989 May;33(5):767–770. doi: 10.1128/aac.33.5.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Granich G. G., Krogstad D. J. Ion pair high-performance liquid chromatographic assay for ceftriaxone. Antimicrob Agents Chemother. 1987 Mar;31(3):385–388. doi: 10.1128/aac.31.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jarlier V., Nicolas M. H., Fournier G., Philippon A. Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis. 1988 Jul-Aug;10(4):867–878. doi: 10.1093/clinids/10.4.867. [DOI] [PubMed] [Google Scholar]
  8. Joly V., Pangon B., Vallois J. M., Abel L., Brion N., Bure A., Chau N. P., Contrepois A., Carbon C. Value of antibiotic levels in serum and cardiac vegetations for predicting antibacterial effect of ceftriaxone in experimental Escherichia coli endocarditis. Antimicrob Agents Chemother. 1987 Oct;31(10):1632–1639. doi: 10.1128/aac.31.10.1632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kliebe C., Nies B. A., Meyer J. F., Tolxdorff-Neutzling R. M., Wiedemann B. Evolution of plasmid-coded resistance to broad-spectrum cephalosporins. Antimicrob Agents Chemother. 1985 Aug;28(2):302–307. doi: 10.1128/aac.28.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lees L., Milson J. A., Knirsch A. K., Greenhalgh K. Sulbactam plus ampicillin: interim review of efficacy and safety for therapeutic and prophylactic use. Rev Infect Dis. 1986 Nov-Dec;8 (Suppl 5):S644–S650. doi: 10.1093/clinids/8.supplement_5.s644. [DOI] [PubMed] [Google Scholar]
  11. Pangon B., Joly V., Vallois J. M., Abel L., Buré A., Brion N., Contrepois A., Carbon C. Comparative efficacy of cefotiam, cefmenoxime, and ceftriaxone in experimental endocarditis and correlation with pharmacokinetics and in vitro efficacy. Antimicrob Agents Chemother. 1987 Apr;31(4):518–522. doi: 10.1128/aac.31.4.518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pearson R. D., Steigbigel R. T., Davis H. T., Chapman S. W. Method of reliable determination of minimal lethal antibiotic concentrations. Antimicrob Agents Chemother. 1980 Nov;18(5):699–708. doi: 10.1128/aac.18.5.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Philippon A. M., Paul G. C., Jacoby G. A. Properties of PSE-2 beta-lactamase and genetic basis for its production in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1983 Sep;24(3):362–369. doi: 10.1128/aac.24.3.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Philippon A., Labia R., Jacoby G. Extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1989 Aug;33(8):1131–1136. doi: 10.1128/aac.33.8.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. ROgers H. J., Bradbrook I. D., Morrison P. J., Spector R. G., Cox D. A., Lees L. J. Pharmacokinetics and bioavailability of sultamicillin estimated by high performance liquid chromatography. J Antimicrob Chemother. 1983 May;11(5):435–445. doi: 10.1093/jac/11.5.435. [DOI] [PubMed] [Google Scholar]
  16. Sanders C. C., Sanders W. E., Jr Emergence of resistance during therapy with the newer beta-lactam antibiotics: role of inducible beta-lactamases and implications for the future. Rev Infect Dis. 1983 Jul-Aug;5(4):639–648. doi: 10.1093/clinids/5.4.639. [DOI] [PubMed] [Google Scholar]
  17. Sanders W. E., Jr, Sanders C. C. Inducible beta-lactamases: clinical and epidemiologic implications for use of newer cephalosporins. Rev Infect Dis. 1988 Jul-Aug;10(4):830–838. doi: 10.1093/clinids/10.4.830. [DOI] [PubMed] [Google Scholar]
  18. Shah P. M., Stille W. Escherichia coli and Klebsiella pneumoniae strains more susceptible to cefoxitin than to third generation cephalosporins. J Antimicrob Chemother. 1983 Jun;11(6):597–598. doi: 10.1093/jac/11.6.597. [DOI] [PubMed] [Google Scholar]
  19. Washburn R. G., Durack D. T. Efficacy of ampicillin plus a beta-lactamase inhibitor (CP-45,899) in experimental endocarditis due to Staphylococcus aureus. J Infect Dis. 1981 Sep;144(3):237–243. doi: 10.1093/infdis/144.3.237. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES