Abstract
Multiple injections of ofloxacin (subcutaneous or oral) in combination with a Lactobacillus casei preparation, LC9018 (subcutaneous), in mice infected intravenously with Mycobacterium fortuitum led to a marked delay in the incidence of spinning disease, a lowered incidence of gross renal lesions, and an increase in the rate of elimination of organisms from the kidneys. This indicates synergism in the therapeutic efficacy of the two agents. When the antimicrobial ability of peritoneal macrophages (M phi s) against M. fortuitum was measured in medium with or without ofloxacin, growth of the organisms was more markedly inhibited by ofloxacin in LC9018-induced M phi s than in normal M phi s. Synergism in the therapeutic activity of oxfloxacin plus LC9018 is assumed to be mediated in part by host M phi s, that is, functional stimulation of host M phi s by LC9018 treatment results in the synergistic effects of the two agents.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dannenberg A. M., Jr Immune mechanisms in the pathogenesis of pulmonary tuberculosis. Rev Infect Dis. 1989 Mar-Apr;11 (Suppl 2):S369–S378. doi: 10.1093/clinids/11.supplement_2.s369. [DOI] [PubMed] [Google Scholar]
- Edwards D., Kirkpatrick C. H. The immunology of mycobacterial diseases. Am Rev Respir Dis. 1986 Nov;134(5):1062–1071. doi: 10.1164/arrd.1986.134.5.1062. [DOI] [PubMed] [Google Scholar]
- GORRILL R. H. Bacterial localisation in the kidney with particular reference to Pseudomonas pyocyanea. J Pathol Bacteriol. 1952 Oct;64(4):857–864. doi: 10.1002/path.1700640417. [DOI] [PubMed] [Google Scholar]
- Heifets L. B., Lindholm-Levy P. J. Bacteriostatic and bactericidal activity of ciprofloxacin and ofloxacin against Mycobacterium tuberculosis and Mycobacterium avium complex. Tubercle. 1987 Dec;68(4):267–276. doi: 10.1016/0041-3879(87)90067-5. [DOI] [PubMed] [Google Scholar]
- Kato I., Kobayashi S., Yokokura T., Mutai M. Antitumor activity of Lactobacillus casei in mice. Gan. 1981 Aug;72(4):517–523. [PubMed] [Google Scholar]
- Kurtz R. S., Young K. M., Czuprynski C. J. Separate and combined effects of recombinant interleukin-1 alpha and gamma interferon on antibacterial resistance. Infect Immun. 1989 Feb;57(2):553–558. doi: 10.1128/iai.57.2.553-558.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leysen D. C., Haemers A., Pattyn S. R. Mycobacteria and the new quinolones. Antimicrob Agents Chemother. 1989 Jan;33(1):1–5. doi: 10.1128/aac.33.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miake S., Nomoto K., Yokokura T., Yoshikai Y., Mutai M., Nomoto K. Protective effect of Lactobacillus casei on Pseudomonas aeruginosa infection in mice. Infect Immun. 1985 May;48(2):480–485. doi: 10.1128/iai.48.2.480-485.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyajima A., Miyatake S., Schreurs J., De Vries J., Arai N., Yokota T., Arai K. Coordinate regulation of immune and inflammatory responses by T cell-derived lymphokines. FASEB J. 1988 Jun;2(9):2462–2473. doi: 10.1096/fasebj.2.9.2836253. [DOI] [PubMed] [Google Scholar]
- Nanno M., Shimizu T., Mike A., Ohwaki M., Mutai M. Role of macrophages in serum colony-stimulating factor induction by Lactobacillus casei in mice. Infect Immun. 1988 Feb;56(2):357–362. doi: 10.1128/iai.56.2.357-362.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nathan C. F. Mechanisms of macrophage antimicrobial activity. Trans R Soc Trop Med Hyg. 1983;77(5):620–630. doi: 10.1016/0035-9203(83)90190-6. [DOI] [PubMed] [Google Scholar]
- Saito H., Nagashima K., Tomioka H. Effects of bacterial immunopotentiators, LC 9018 and OK-432, on the resistance against Mycobacterium intracellulare infection in mice. Hiroshima J Med Sci. 1983 Mar;32(1):145–148. [PubMed] [Google Scholar]
- Saito H., Sato K., Tomioka H., Watanabe T. [In vitro and in vivo activities of norfloxacin, ofloxacin and ciprofloxacin against various mycobacteria]. Kekkaku. 1987 May;62(5):287–294. [PubMed] [Google Scholar]
- Saito H., Tasaka H. Comparison of the pathogenicity for mice of Mycobacterium fortuitum and Mycobacterium abscessus. J Bacteriol. 1969 Sep;99(3):851–855. doi: 10.1128/jb.99.3.851-855.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saito H., Tomioka H., Nagashima K. Protective and therapeutic efficacy of Lactobacillus casei against experimental murine infections due to Mycobacterium fortuitum complex. J Gen Microbiol. 1987 Oct;133(10):2843–2851. doi: 10.1099/00221287-133-10-2843. [DOI] [PubMed] [Google Scholar]
- Saito H., Tomioka H., Yoneyama T. Growth of group IV mycobacteria on medium containing various saturated and unsaturated fatty acids. Antimicrob Agents Chemother. 1984 Aug;26(2):164–169. doi: 10.1128/aac.26.2.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanders W. E., Jr, Hartwig E. C., Schneider N. J., Cacciatore R., Valdez H. Susceptibility of organisms in the Mycobacterium fortuitum complex to antituberculous and other antimicrobial agents. Antimicrob Agents Chemother. 1977 Aug;12(2):295–297. doi: 10.1128/aac.12.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato K. Enhancement of host resistance against Listeria infection by Lactobacillus casei: role of macrophages. Infect Immun. 1984 May;44(2):445–451. doi: 10.1128/iai.44.2.445-451.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato K., Matsuura Y., Inoue M., Une T., Osada Y., Ogawa H., Mitsuhashi S. In vitro and in vivo activity of DL-8280, a new oxazine derivative. Antimicrob Agents Chemother. 1982 Oct;22(4):548–553. doi: 10.1128/aac.22.4.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomioka H., Saito H. Comparison of wheat germ agglutinin- and phorbol myristate acetate-mediated triggering for macrophage H2O2 release: susceptibilities to various macrophage inhibitors. Microbiol Immunol. 1987;31(3):211–221. doi: 10.1111/j.1348-0421.1987.tb03085.x. [DOI] [PubMed] [Google Scholar]
- Tsukamura M. In vitro antituberculosis activity of a new antibacterial substance ofloxacin (DL8280). Am Rev Respir Dis. 1985 Mar;131(3):348–351. doi: 10.1164/arrd.1985.131.3.348. [DOI] [PubMed] [Google Scholar]
- Tsukamura M., Nakamura E., Yoshii S., Amano H. Therapeutic effect of a new antibacterial substance ofloxacin (DL8280) on pulmonary tuberculosis. Am Rev Respir Dis. 1985 Mar;131(3):352–356. doi: 10.1164/arrd.1985.131.3.352. [DOI] [PubMed] [Google Scholar]
- Wise R., Andrews J. M., Edwards L. J. In vitro activity of Bay 09867, a new quinoline derivative, compared with those of other antimicrobial agents. Antimicrob Agents Chemother. 1983 Apr;23(4):559–564. doi: 10.1128/aac.23.4.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolinsky E. Nontuberculous mycobacteria and associated diseases. Am Rev Respir Dis. 1979 Jan;119(1):107–159. doi: 10.1164/arrd.1979.119.1.107. [DOI] [PubMed] [Google Scholar]
- Woods G. L., Washington J. A., 2nd Mycobacteria other than Mycobacterium tuberculosis: review of microbiologic and clinical aspects. Rev Infect Dis. 1987 Mar-Apr;9(2):275–294. doi: 10.1093/clinids/9.2.275. [DOI] [PubMed] [Google Scholar]
- Yamada Y., Saito H., Tomioka H., Jidoi J. Relationship between the susceptibility of various bacteria to active oxygen species and to intracellular killing by macrophages. J Gen Microbiol. 1987 Aug;133(8):2015–2021. doi: 10.1099/00221287-133-8-2015. [DOI] [PubMed] [Google Scholar]
- Yamada Y., Saito H., Tomioka H., Jidoi J. Susceptibility of micro-organisms to active oxygen species: sensitivity to the xanthine-oxidase-mediated antimicrobial system. J Gen Microbiol. 1987 Aug;133(8):2007–2014. doi: 10.1099/00221287-133-8-2007. [DOI] [PubMed] [Google Scholar]
