Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1990 May;34(5):796–802. doi: 10.1128/aac.34.5.796

Bacitracin-induced proteins in Bacillus subtilis and Bacillus thuringiensis and their relationship with resistance.

M García-Patrone 1
PMCID: PMC171694  PMID: 2113795

Abstract

Bacitracin induced one protein (bacitracin-induced protein [BIP]) in Bacillus thuringiensis and two proteins (BIP1 and BIP2) in Bacillus subtilis that were localized in the membrane. Divalent cations acted as cofactors for induction in all three cases. Growth was initially inhibited by the antibiotic, but following induction of proteins growth resumed. B. subtilis cells possessing BIPs were able to duplicate at a normal rate in the presence of bacitracin. The amount of B. subtilis BIPs diminished markedly after a few divisions in the absence of the antibiotic and the organism simultaneously reverted to the susceptible state. Induction of the proteins did not take place after the fourth or fifth hour of the stationary phase. The B. thuringiensis BIP was also induced by vancomycin. Bacitracin did not induce the synthesis of specific proteins in susceptible (Micrococcus lysodeikticus) or outer membrane-possessing resistant bacteria (Escherichia coli).

Full text

PDF
796

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADLER R. H., SNOKE J. E. Requirement of divalent metal ions for bacitracin activity. J Bacteriol. 1962 Jun;83:1315–1317. doi: 10.1128/jb.83.6.1315-1317.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bechtel D. B., Bulla L. A., Jr Electron microscope study of sporulation and parasporal crystal formation in Bacillus thuringiensis. J Bacteriol. 1976 Sep;127(3):1472–1481. doi: 10.1128/jb.127.3.1472-1481.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dubnau D. A., Pollock M. R. The genetics of Bacillus licheniformis penicillinase: a preliminary analysis from studies on mutation and inter-strain and intra-strain transformations. J Gen Microbiol. 1965 Oct;41(1):7–21. doi: 10.1099/00221287-41-1-7. [DOI] [PubMed] [Google Scholar]
  4. García-Patrone M. Bacitracin increases size of parasporal crystals and spores in Bacillus thuringiensis. Mol Cell Biochem. 1985 Oct;68(2):131–137. doi: 10.1007/BF00219377. [DOI] [PubMed] [Google Scholar]
  5. Gryczan T., Israeli-Reches M., Del Bue M., Dubnau D. DNA sequence and regulation of ermD, a macrolide-lincosamide-streptogramin B resistance element from Bacillus licheniformis. Mol Gen Genet. 1984;194(3):349–356. doi: 10.1007/BF00425543. [DOI] [PubMed] [Google Scholar]
  6. Haavik H. I. On the role of bacitracin peptides in trace metal transport by Bacillus licheniformis. J Gen Microbiol. 1976 Oct;96(2):393–399. doi: 10.1099/00221287-96-2-393. [DOI] [PubMed] [Google Scholar]
  7. Horinouchi S., Byeon W. H., Weisblum B. A complex attenuator regulates inducible resistance to macrolides, lincosamides, and streptogramin type B antibiotics in Streptococcus sanguis. J Bacteriol. 1983 Jun;154(3):1252–1262. doi: 10.1128/jb.154.3.1252-1262.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  9. Mescher M. F., Strominger J. L. Glycosylation of the surface glycoprotein of Halobacterium salinarium via a cyclic pathway of lipid-linked intermediates. FEBS Lett. 1978 May 1;89(1):37–41. doi: 10.1016/0014-5793(78)80517-1. [DOI] [PubMed] [Google Scholar]
  10. Nickerson K. W., St Julian G., Bulla L. A., Jr Physiology of sporeforming bacteria associated with insects: radiorespirometric survey of carbohydrate metabolism in the 12 serotypes of Bacillus thuringiensis. Appl Microbiol. 1974 Jul;28(1):129–132. doi: 10.1128/am.28.1.129-132.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Perkins H. R. Specificity of combination between mucopeptide precursors and vancomycin or ristocetin. Biochem J. 1969 Jan;111(2):195–205. doi: 10.1042/bj1110195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rosenthal K. S., Storm D. R. Disruption of the Escherichia coli outer membrane permeability barrier by immobilized polymyxin B. J Antibiot (Tokyo) 1977 Dec;30(12):1087–1092. doi: 10.7164/antibiotics.30.1087. [DOI] [PubMed] [Google Scholar]
  13. SMITH J. L., WEINBERG E. D. Mechanisms of antibacterial action of bacitracin. J Gen Microbiol. 1962 Jul;28:559–569. doi: 10.1099/00221287-28-3-559. [DOI] [PubMed] [Google Scholar]
  14. SNOKE J. E., CORNELL N. PROTOPLAST LYSIS AND INHIBITION OF GROWTH OF BACILLUS LICHENIFORMIS BY BACITRACIN. J Bacteriol. 1965 Feb;89:415–420. doi: 10.1128/jb.89.2.415-420.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sharpe E. S., Nickerson K. W., Bulla L. A., Jr, Aronson J. N. Separation of spores and parasporal crystals of Bacillus thuringiensis in gradients of certain x-ray contrasting agents. Appl Microbiol. 1975 Dec;30(6):1052–1053. doi: 10.1128/am.30.6.1052-1053.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shlaes D. M., Bouvet A., Devine C., Shlaes J. H., al-Obeid S., Williamson R. Inducible, transferable resistance to vancomycin in Enterococcus faecalis A256. Antimicrob Agents Chemother. 1989 Feb;33(2):198–203. doi: 10.1128/aac.33.2.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Siewert G., Strominger J. L. Bacitracin: an inhibitor of the dephosphorylation of lipid pyrophosphate, an intermediate in the biosynthesis of the peptidoglycan of bacterial cell walls. Proc Natl Acad Sci U S A. 1967 Mar;57(3):767–773. doi: 10.1073/pnas.57.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stone K. J., Strominger J. L. Isolation of C 55 -isoprenylpyrophosphate from micrococcus lysodeikticus. J Biol Chem. 1972 Aug 25;247(16):5107–5112. [PubMed] [Google Scholar]
  19. Stone K. J., Strominger J. L. Mechanism of action of bacitracin: complexation with metal ion and C 55 -isoprenyl pyrophosphate. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3223–3227. doi: 10.1073/pnas.68.12.3223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Storm D. R., Strominger J. L. Binding of bacitracin to cells and protoplasts of Micrococcus lysodeikticus. J Biol Chem. 1974 Mar 25;249(6):1823–1827. [PubMed] [Google Scholar]
  21. Storm D. R., Strominger J. L. Complex formation between bacitracin peptides and isoprenyl pyrophosphates. The specificity of lipid-peptide interactions. J Biol Chem. 1973 Jun 10;248(11):3940–3945. [PubMed] [Google Scholar]
  22. Studier F. W. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol. 1973 Sep 15;79(2):237–248. doi: 10.1016/0022-2836(73)90003-x. [DOI] [PubMed] [Google Scholar]
  23. Tai P. C., Caulfield M. P., Davis B. D. Synthesis of proteins by membrane-associated polysomes and free polysomes. Methods Enzymol. 1983;97:62–69. doi: 10.1016/0076-6879(83)97119-7. [DOI] [PubMed] [Google Scholar]
  24. Toscano W. A., Jr, Storm D. R. Bacitracin. Pharmacol Ther. 1982;16(2):199–210. doi: 10.1016/0163-7258(82)90054-7. [DOI] [PubMed] [Google Scholar]
  25. WEAVER J. R., PATTEE P. A. INDUCIBLE RESISTANCE TO ERYTHROMYCIN IN STAPHYLOCOCCUS AUREUS. J Bacteriol. 1964 Sep;88:574–580. doi: 10.1128/jb.88.3.574-580.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Williams D. M., Duvall E. J., Lovett P. S. Cloning restriction fragments that promote expression of a gene in Bacillus subtilis. J Bacteriol. 1981 Jun;146(3):1162–1165. doi: 10.1128/jb.146.3.1162-1165.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wilson C. R., Skinner S. E., Shaw W. V. Analysis of two chloramphenicol resistance plasmids from Staphylococcus aureus: insertional inactivation of Cm resistance, mapping of restriction sites, and construction of cloning vehicles. Plasmid. 1981 May;5(3):245–258. doi: 10.1016/0147-619x(81)90002-0. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES