Skip to main content
Archives of Disease in Childhood logoLink to Archives of Disease in Childhood
. 1997 Jan;76(1):9–15. doi: 10.1136/adc.76.1.9

Whole body bone mineral content in healthy children and adolescents

C Molgaard 1, B L Thomsen 1, A Prentice 1, T Cole 1, K F Michaelsen 1
PMCID: PMC1717036  PMID: 9059153

Abstract

Accepted 23 July 1996


Data from healthy children are needed to evaluate bone mineralisation during childhood. Whole body bone mineral content (BMC) and bone area were examined by dual energy x ray absorptiometry (Hologic 1000/W) in healthy girls (n=201) and boys (n=142) aged 5-19 years. Centile curves for bone area for age, BMC for age, bone area for height, and BMC for bone area were constructed using the LMS method. Bone mineral density calculated as BMC/bone area is not useful in children as it is significantly influenced by bone size. Instead, it is proposed that bone mineralisation is assessed in three steps: height for age, bone area for height, and BMC for bone area. These three steps correspond to three different causes of reduced bone mass: short bones, narrow bones, and light bones.



Full Text

The Full Text of this article is available as a PDF (178.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen E., Hutchings B., Jansen J., Nyholm M. Højde og vaegt hos danske børn. Ugeskr Laeger. 1982 Jun 14;144(24):1760–1765. [PubMed] [Google Scholar]
  2. Bachrach L. K., Loutit C. W., Moss R. B. Osteopenia in adults with cystic fibrosis. Am J Med. 1994 Jan;96(1):27–34. doi: 10.1016/0002-9343(94)90112-0. [DOI] [PubMed] [Google Scholar]
  3. Bishop N. J., dePriester J. A., Cole T. J., Lucas A. Reference values for radial bone width and mineral content using single photon absorptiometry in healthy children aged 4 to 10 years. Acta Paediatr. 1992 Jun-Jul;81(6-7):463–468. doi: 10.1111/j.1651-2227.1992.tb12275.x. [DOI] [PubMed] [Google Scholar]
  4. Bonjour J. P., Theintz G., Buchs B., Slosman D., Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab. 1991 Sep;73(3):555–563. doi: 10.1210/jcem-73-3-555. [DOI] [PubMed] [Google Scholar]
  5. Carter D. R., Bouxsein M. L., Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res. 1992 Feb;7(2):137–145. doi: 10.1002/jbmr.5650070204. [DOI] [PubMed] [Google Scholar]
  6. Cernerud L. Height and body mass index of seven-year-old Stockholm schoolchildren from 1940 to 1990. Acta Paediatr. 1993 Mar;82(3):304–305. doi: 10.1111/j.1651-2227.1993.tb12666.x. [DOI] [PubMed] [Google Scholar]
  7. Cole T. J., Green P. J. Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med. 1992 Jul;11(10):1305–1319. doi: 10.1002/sim.4780111005. [DOI] [PubMed] [Google Scholar]
  8. Faulkner R. A., Bailey D. A., Drinkwater D. T., Wilkinson A. A., Houston C. S., McKay H. A. Regional and total body bone mineral content, bone mineral density, and total body tissue composition in children 8-16 years of age. Calcif Tissue Int. 1993 Jul;53(1):7–12. doi: 10.1007/BF01352007. [DOI] [PubMed] [Google Scholar]
  9. Glastre C., Braillon P., David L., Cochat P., Meunier P. J., Delmas P. D. Measurement of bone mineral content of the lumbar spine by dual energy x-ray absorptiometry in normal children: correlations with growth parameters. J Clin Endocrinol Metab. 1990 May;70(5):1330–1333. doi: 10.1210/jcem-70-5-1330. [DOI] [PubMed] [Google Scholar]
  10. Gordon C. L., Halton J. M., Atkinson S. A., Webber C. E. The contributions of growth and puberty to peak bone mass. Growth Dev Aging. 1991 Winter;55(4):257–262. [PubMed] [Google Scholar]
  11. Goslings W. R., Cole T. J., Prentice A., Bishop N. J. Rate of radial bone mineral accretion in healthy children. Acta Paediatr. 1995 Apr;84(4):383–387. doi: 10.1111/j.1651-2227.1995.tb13655.x. [DOI] [PubMed] [Google Scholar]
  12. Gullberg B., Duppe H., Nilsson B., Redlund-Johnell I., Sernbo I., Obrant K., Johnell O. Incidence of hip fractures in Malmö, Sweden (1950-1991). Bone. 1993;14 (Suppl 1):S23–S29. doi: 10.1016/8756-3282(93)90345-b. [DOI] [PubMed] [Google Scholar]
  13. Hannan W. J., Cowen S. J., Wrate R. M., Barton J. Improved prediction of bone mineral content and density. Arch Dis Child. 1995 Feb;72(2):147–149. doi: 10.1136/adc.72.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hansen M. A., Overgaard K., Riis B. J., Christiansen C. Role of peak bone mass and bone loss in postmenopausal osteoporosis: 12 year study. BMJ. 1991 Oct 19;303(6808):961–964. doi: 10.1136/bmj.303.6808.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Issenman R. M., Atkinson S. A., Radoja C., Fraher L. Longitudinal assessment of growth, mineral metabolism, and bone mass in pediatric Crohn's disease. J Pediatr Gastroenterol Nutr. 1993 Nov;17(4):401–406. doi: 10.1097/00005176-199311000-00012. [DOI] [PubMed] [Google Scholar]
  16. Katzman D. K., Bachrach L. K., Carter D. R., Marcus R. Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab. 1991 Dec;73(6):1332–1339. doi: 10.1210/jcem-73-6-1332. [DOI] [PubMed] [Google Scholar]
  17. Lindgren G., Strandell A., Cole T., Healy M., Tanner J. Swedish population reference standards for height, weight and body mass index attained at 6 to 16 years (girls) or 19 years (boys). Acta Paediatr. 1995 Sep;84(9):1019–1028. doi: 10.1111/j.1651-2227.1995.tb13819.x. [DOI] [PubMed] [Google Scholar]
  18. Lloyd T., Rollings N., Andon M. B., Demers L. M., Eggli D. F., Kieselhorst K., Kulin H., Landis J. R., Martel J. K., Orr G. Determinants of bone density in young women. I. Relationships among pubertal development, total body bone mass, and total body bone density in premenarchal females. J Clin Endocrinol Metab. 1992 Aug;75(2):383–387. doi: 10.1210/jcem.75.2.1639940. [DOI] [PubMed] [Google Scholar]
  19. Lu P. W., Briody J. N., Ogle G. D., Morley K., Humphries I. R., Allen J., Howman-Giles R., Sillence D., Cowell C. T. Bone mineral density of total body, spine, and femoral neck in children and young adults: a cross-sectional and longitudinal study. J Bone Miner Res. 1994 Sep;9(9):1451–1458. doi: 10.1002/jbmr.5650090918. [DOI] [PubMed] [Google Scholar]
  20. Matkovic V., Jelic T., Wardlaw G. M., Ilich J. Z., Goel P. K., Wright J. K., Andon M. B., Smith K. T., Heaney R. P. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest. 1994 Feb;93(2):799–808. doi: 10.1172/JCI117034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Melton L. J., 3rd Hip fractures: a worldwide problem today and tomorrow. Bone. 1993;14 (Suppl 1):S1–S8. doi: 10.1016/8756-3282(93)90341-7. [DOI] [PubMed] [Google Scholar]
  22. Mosekilde L., Mosekilde L. Sex differences in age-related changes in vertebral body size, density and biomechanical competence in normal individuals. Bone. 1990;11(2):67–73. doi: 10.1016/8756-3282(90)90052-z. [DOI] [PubMed] [Google Scholar]
  23. Nielsen S. P., Hermansen F., Bärenholdt O. Interpretation of lumbar spine densitometry in women with fractures. Osteoporos Int. 1993 Sep;3(5):276–282. doi: 10.1007/BF01623833. [DOI] [PubMed] [Google Scholar]
  24. Ogle G. D., Allen J. R., Humphries I. R., Lu P. W., Briody J. N., Morley K., Howman-Giles R., Cowell C. T. Body-composition assessment by dual-energy x-ray absorptiometry in subjects aged 4-26 y. Am J Clin Nutr. 1995 Apr;61(4):746–753. doi: 10.1093/ajcn/61.4.746. [DOI] [PubMed] [Google Scholar]
  25. Ponder S. W., McCormick D. P., Fawcett H. D., Palmer J. L., McKernan M. G., Brouhard B. H. Spinal bone mineral density in children aged 5.00 through 11.99 years. Am J Dis Child. 1990 Dec;144(12):1346–1348. doi: 10.1001/archpedi.1990.02150360072023. [DOI] [PubMed] [Google Scholar]
  26. Prentice A., Parsons T. J., Cole T. J. Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr. 1994 Dec;60(6):837–842. doi: 10.1093/ajcn/60.6.837. [DOI] [PubMed] [Google Scholar]
  27. Russell-Aulet M., Wang J., Thornton J. C., Colt E. W., Pierson R. N., Jr Bone mineral density and mass in a cross-sectional study of white and Asian women. J Bone Miner Res. 1993 May;8(5):575–582. doi: 10.1002/jbmr.5650080508. [DOI] [PubMed] [Google Scholar]
  28. Schrøder H. M., Andreassen M. D., Villadsen I., Sørensen J. G., Erlandsen M. Increasing age-specific incidence of hip fractures in a Danish municipality. Dan Med Bull. 1995 Feb;42(1):109–111. [PubMed] [Google Scholar]
  29. Stallings V. A., Oddleifson N. W., Negrini B. Y., Zemel B. S., Wellens R. Bone mineral content and dietary calcium intake in children prescribed a low-lactose diet. J Pediatr Gastroenterol Nutr. 1994 May;18(4):440–445. doi: 10.1097/00005176-199405000-00006. [DOI] [PubMed] [Google Scholar]
  30. Young N., Formica C., Szmukler G., Seeman E. Bone density at weight-bearing and nonweight-bearing sites in ballet dancers: the effects of exercise, hypogonadism, and body weight. J Clin Endocrinol Metab. 1994 Feb;78(2):449–454. doi: 10.1210/jcem.78.2.8106634. [DOI] [PubMed] [Google Scholar]
  31. del Rio L., Carrascosa A., Pons F., Gusinyé M., Yeste D., Domenech F. M. Bone mineral density of the lumbar spine in white Mediterranean Spanish children and adolescents: changes related to age, sex, and puberty. Pediatr Res. 1994 Mar;35(3):362–366. doi: 10.1203/00006450-199403000-00018. [DOI] [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood are provided here courtesy of BMJ Publishing Group

RESOURCES